Giải Bài 86 trang 66 sách bài tập toán 7 tập 1 - Cánh diều>
Tìm ba số x, y, z biết:
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Tìm ba số x, y, z biết:
a) \(2x = 3y;{\rm{ }}5y = 7z\) và \(3x - 7y + 5z = 30\);
b) \(\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\) và \(x - 2y + 3z = 14\).
Phương pháp giải - Xem chi tiết
Áp dụng tính chất dãy tỉ số bằng nhau để tìm ba số x, y, z
\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{g} = \dfrac{{a + c + e}}{{b + d + g}} = \dfrac{{a - c - e}}{{b - d - g}} = \dfrac{{a - c + e}}{{b - d + g}}\).
Lời giải chi tiết
a) \(2x = 3y;{\rm{ }}5y = 7z\) và \(3x - 7y + 5z = 30\);
Ta có:
\(2x = 3y;{\rm{ }}5y = 7z \) nên \(\dfrac{x}{3} = \dfrac{y}{2}\)
\(\dfrac{y}{7} = \dfrac{z}{5}\) nên \(\dfrac{x}{{21}} = \dfrac{y}{{14}} = \dfrac{z}{{10}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{{21}} = \dfrac{y}{{14}} = \dfrac{z}{{10}} = \dfrac{{3x - 7y + 5z}}{{3{\rm{ }}.{\rm{ }}21 - 7{\rm{ }}.{\rm{ }}14 + 5{\rm{ }}.{\rm{ }}10}} = \dfrac{{30}}{{15}} = 2\).
Do đó: \(x = 2{\rm{ }}{\rm{. 21 = 42}}\)
\(y = 2{\rm{ }}{\rm{. 14 = 28}}\)
\(z = 2{\rm{ }}{\rm{. 10 = 20}}\).
b) \(\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\) và \(x - 2y + 3z = 14\).
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4} = \dfrac{{x - 1 - 2(y - 2) + 3(z - 3)}}{{2 - 2{\rm{ }}.{\rm{ }}3 + 3{\rm{ }}.{\rm{ }}4}} = \dfrac{{x - 1 - 2y + 4 + 3z - 9}}{8}\\ = \dfrac{{x - 2y + 3z - 6}}{8} = \dfrac{{14 - 6}}{8} = \dfrac{8}{8} = 1\end{array}\)
Do đó: \(x = 1{\rm{ }}.{\rm{ }}2 + 1 = 3\)
\(y = 1{\rm{ }}.{\rm{ }}3 + 2 = 5\)
\(z = 1{\rm{ }}.{\rm{ }}4 + 3 = 7\).


- Giải Bài 87 trang 66 sách bài tập toán 7 tập 1 - Cánh diều
- Giải Bài 88 trang 66 sách bài tập toán 7 tập 1 - Cánh diều
- Giải Bài 89 trang 66 sách bài tập toán 7 tập 1 - Cánh diều
- Giải Bài 90 trang 67 sách bài tập toán 7 tập 1 - Cánh diều
- Giải Bài 91 trang 67 sách bài tập toán 7 tập 1 - Cánh diều
>> Xem thêm