Giải bài 6 trang 32 SGK Toán 10 tập 2 – Chân trời sáng tạo


Đề bài

Có 4 đường thẳng song song cắt 5 đường thẳng song song khác tạo thành những hình bình hành (như hình 10). Có bao nhiêu hình bình hành được tạo thành?

Phương pháp giải - Xem chi tiết

Bước 1: Chọn 2 đường thẳng song song trong 4 đường

Bước 2: Chọn 2 đường thẳng song song từ 5 đường kia

Bước 3: Áp dụng quy tắc nhân

Lời giải chi tiết

Ta thấy rằng, cứ 2 đường thẳng song song cắt 2 đường thẳng song song khác thì tạo thành một hình bình hành

Do đó, hình bình hành tạo thành được xác định qua 2 công đoạn

Công đoạn 1: Chọn 2 đường thẳng song song với nhau trong 4 đường thẳng, mỗi cách chọn 2 đường thẳng từ 4 đường là một tổ hợp chập 2 của 4. Do đó, số cách chọn 2 đường thẳng từ 4 đường thẳng là:        

\(C_4^2 = \frac{{4!}}{{2!.2!}} = 6\)

Công đoạn 2: Chọn 2 đường thẳng song song với nhau trong 5 đường thẳng bị cắt bởi 2 đường kia, mỗi cách chọn 2 đường thẳng từ 5 đường là một tổ hợp chập 2 của 5. Do đó, số cách chọn 2 đường thẳng từ 5 đường thẳng là:                                              \(C_4^2 = \frac{{5!}}{{2!.3!}} = 10\)

Áp dụng quy tắc nhân, ta có số hình bình hành được tạo thành là:

                             \(6.10 = 60\) (hình bình hành)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.