Giải bài 34 trang 18 sách bài tập toán 12 - Cánh diều


Giá trị lớn nhất của hàm số (y = {e^{{x^3} - 3{rm{x}} + 3}}) trên đoạn (left[ {0;2} right]) bằng: A. ({e^2}). B. ({e^3}). C. ({e^5}). D. (e).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Giá trị lớn nhất của hàm số \(y = {e^{{x^3} - 3{\rm{x}} + 3}}\) trên đoạn \(\left[ {0;2} \right]\) bằng:

A. \({e^2}\).                

B. \({e^3}\).                

C. \({e^5}\).                

D. \(e\).

Phương pháp giải - Xem chi tiết

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):

Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\).

Bước 3. So sánh các giá trị tìm được ở Bước 2.

Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\).

Lời giải chi tiết

Ta có: \(y' = {\left( {{x^3} - 3{\rm{x}} + 3} \right)^\prime }.{e^{{x^3} - 3{\rm{x}} + 3}} = \left( {3{\rm{x}} - 3} \right).{e^{{x^3} - 3{\rm{x}} + 3}}\)

Khi đó, trên đoạn \(\left[ {0;2} \right]\), \(y' = 0\) khi \(x = 1\).

\(y\left( 0 \right) = {e^3};y\left( 1 \right) = e;y\left( 2 \right) = {e^5}\).

Vậy \(\mathop {\max }\limits_{\left[ {0;\frac{\pi }{2}} \right]} y = {e^5}\) tại \(x = 2\).

Chọn C.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 35 trang 18 sách bài tập toán 12 - Cánh diều

    Giá trị nhỏ nhất của hàm số (y = left( {{x^2} - 2} right).{e^{2x}}) trên đoạn (left[ { - 1;2} right]) bằng: A. ( - {e^2}). B. ( - 2{e^2}). C. (2{e^4}). D. (2{e^2}).

  • Giải bài 36 trang 18 sách bài tập toán 12 - Cánh diều

    Giá trị lớn nhất của hàm số (y = ln left( {{x^2} + x + 2} right)) trên đoạn (left[ {1;3} right]) bằng: A. (ln 14). B. (ln 12). C. (ln 4). D. (ln 10).

  • Giải bài 37 trang 18 sách bài tập toán 12 - Cánh diều

    Giá trị nhỏ nhất (m), giá trị lớn nhất (M) của hàm số (y = xsqrt {4 - {x^2}} ) lần lượt bằng: A. (m = 0,M = 2). B. (m = - 2,M = 2). C. (m = - 2,M = 0). D. (m = 0,M = 4).

  • Giải bài 38 trang 18 sách bài tập toán 12 - Cánh diều

    Biết giá trị lớn nhất của hàm số (y = frac{{{{left( {ln x} right)}^2}}}{x}) trên đoạn (left[ {1;{e^3}} right]) là (M = frac{a}{{{e^b}}}), trong đó (a,b) là các số tự nhiên. Khi đó ({a^2} + 2{b^3}) bằng: A. 22. B. 24. C. 32. D. 135.

  • Giải bài 39 trang 18 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = {x^2}.ln x). a) (y' = 2{rm{x}}.ln {rm{x}}). b) (y' = 0) khi (x = 1). c) (yleft( {frac{1}{{sqrt e }}} right) = - frac{1}{{2{rm{e}}}}). d) Giá trị nhỏ nhất của hàm số trên đoạn (left[ {frac{1}{e};e} right]) bằng ( - frac{1}{{2{rm{e}}}}).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí