Giải bài 31 trang 17 sách bài tập toán 12 - Cánh diều


Giá trị lớn nhất của hàm số (y = frac{{{x^2} - 3{rm{x}}}}{{x + 1}}) trên đoạn (left[ {0;3} right]) bằng: A. 0. B. 1. C. 2. D. 3.

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Giá trị lớn nhất của hàm số \(y = \frac{{{x^2} - 3{\rm{x}}}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\) bằng:

A. 0.                           

B. 1.                           

C. 2.                              

D. 3.

Phương pháp giải - Xem chi tiết

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):

Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\).

Bước 3. So sánh các giá trị tìm được ở Bước 2.

Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\).

Lời giải chi tiết

Ta có:

\(y' = \frac{{({x^2} - 3x)'(x + 1) - ({x^2} - 3x)(x + 1)'}}{{{{(x + 1)}^2}}} = \frac{{(2x - 3)(x + 1) - ({x^2} - 3x)}}{{{{(x + 1)}^2}}}\)

\( = \frac{{{x^2} + 2x - 3}}{{{{(x + 1)}^2}}} = \frac{{(x - 1)(x + 3)}}{{{{(x + 1)}^2}}}\)

Khi đó, trên đoạn \(\left[ {0;3} \right]\), \(y' = 0\) khi \(x = 1\).

\(y\left( 0 \right) = 0;y\left( 1 \right) =  - 1;y\left( 3 \right) = 0\).

Vậy \(\mathop {\max }\limits_{\left[ {0;3} \right]} y = 0\) tại \({\rm{x}} = 0\) hoặc \({\rm{x}} = 3\).

Chọn A.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 32 trang 18 sách bài tập toán 12 - Cánh diều

    Giá trị nhỏ nhất của hàm số (y = x + 1 + frac{1}{{x + 1}}) trên đoạn (left[ {1;2} right]) bằng: A. 2. B. (frac{5}{2}). C. (frac{{10}}{3}). D. ‒2.

  • Giải bài 33 trang 18 sách bài tập toán 12 - Cánh diều

    Giá trị lớn nhất của hàm số (y = x + sqrt 2 cos x) trên đoạn (left[ {0;frac{pi }{2}} right]) bằng: A. (sqrt 2 ). B. (sqrt 3 ). C. (frac{pi }{4} + 1). D. (frac{pi }{2}).

  • Giải bài 34 trang 18 sách bài tập toán 12 - Cánh diều

    Giá trị lớn nhất của hàm số (y = {e^{{x^3} - 3{rm{x}} + 3}}) trên đoạn (left[ {0;2} right]) bằng: A. ({e^2}). B. ({e^3}). C. ({e^5}). D. (e).

  • Giải bài 35 trang 18 sách bài tập toán 12 - Cánh diều

    Giá trị nhỏ nhất của hàm số (y = left( {{x^2} - 2} right).{e^{2x}}) trên đoạn (left[ { - 1;2} right]) bằng: A. ( - {e^2}). B. ( - 2{e^2}). C. (2{e^4}). D. (2{e^2}).

  • Giải bài 36 trang 18 sách bài tập toán 12 - Cánh diều

    Giá trị lớn nhất của hàm số (y = ln left( {{x^2} + x + 2} right)) trên đoạn (left[ {1;3} right]) bằng: A. (ln 14). B. (ln 12). C. (ln 4). D. (ln 10).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí