Đề thi học kì 2 Toán 7 - Đề số 1 - Kết nối tri thức


I. TRẮC NGHIỆM ( 2 điểm) Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

I. TRẮC NGHIỆM ( 2 điểm)

Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Câu 1. Cho tam giác MNPMNP cân tại MMN=500N=500. Số đo của góc MM là:

     A. 650650                      B. 500500                           C. 13001300                         D. 800800     

Câu 2. Cho ΔABCΔABCA=550,B=850A=550,B=850 thì quan hệ giữa ba cạnh AB,AC,BCAB,AC,BC là:

A. BC>AC>ABBC>AC>AB                  

B. AB>BC>ACAB>BC>AC

C. AB>AC>BCAB>AC>BC                 

D. AC>BC>ABAC>BC>AB

Câu 3. Hình hộp chữ nhật có bao nhiêu cạnh?

  1. 4                                 B. 6                                    C. 8                                    D. 12

Câu 4: Thể tích của hình lăng trụ đứng tứ giác có đáy là hình thoi có 2 đường chéo 8 cm, 12 cm; chiều cao 20 cm là:

A. 96cm296cm2                 B. 96cm396cm3                  C. 192cm3192cm3                D. 192cm2192cm2

Câu 5. Tính 2x3.5x42x3.5x4ta thu được kết quả là:

     A. 10x410x4                     B. 10x310x3                     C. 10x710x7                     D. 10x1210x12

Câu 6. Hệ số cao nhất của đa thức M = 10x2 – 4x + 3 – 5x

A. 10;

B. -4;

C. 3;

D. -5.

Câu 7. Cho tam giác ABC, đường trung tuyến AM = 9 cm. Gọi G là trọng tâm của tam giác. Tính độ dài GM?

A. GM = 6 cm;

B. GM = 9 cm;

C. GM = 3 cm;

D. GM = 18 cm.

Câu 8. Đội múa có 1 bạn nam và 5 bạn nữ. Chọn ngẫu nhiên 1 bạn để phỏng vấn. Biết mỗi bạn đều có khả năng được chọn. Tính xác suất của biến cố “Bạn được chọn là nam”.

     A. 1                                    B.  1515              C.  5656              D.  1616

II. PHẦN TỰ LUẬN (8,0 điểm)

Bài 1. (1 điểm) Tìm xx biết:

a) 112+x=1112112+x=1112                                                     

b)  2x127=32x12x127=32x1

Bài 2. (1,5 điểm) Ba đội công nhân tham gia làm đường và phải làm ba khối lượng công việc như nhau. Để hoàn thành công việc, đội I cần 4 ngày, đội II cần 6 ngày và đội III cần 8 ngày. Tính số công nhân của mỗi đội, biết rằng đội I có nhiều hơn đội II là 4 người (năng suất mỗi người như nhau).

Bài 3. (1,5 điểm) Cho các đa thức:

A(x)=2x45x3+7x5+4x3+3x2+2x+3A(x)=2x45x3+7x5+4x3+3x2+2x+3

B(x)=5x43x3+5x3x42x3+96xB(x)=5x43x3+5x3x42x3+96x

C(x)=x4+4x2+5C(x)=x4+4x2+5

a) Thu gọn và sắp xếp các hạng tử của đa thức A(x),B(x) theo lũy thừa giảm dần của biến.

b) Tính A(x)+B(x);A(x)B(x).

c) Chứng minh rằng đa thức C(x) không có nghiệm.

Bài 4. (3,5 điểm) Cho ΔABC cân tại A , đường cao AH(HBC).

a) Chứng minh ΔAHB=ΔAHC.

b) Từ H kẻ đường thẳng song song với AC cắt AB tại D. Chứng minh AD=DH

c) Gọi E là trung điểm AC,CD cắt AH tại G. Chứng minh B,G,E thẳng hàng.

d) Chứng minh chu vi ΔABC>AH+3BG.

Bài 5. (0,5 điểm) 

Cho đa thức f(x)=ax3+bx2+cx+d  với a là số nguyên dương và f(5)f(4)=2019. Chứng minh f(7)f(2) là hợp số.

Lời giải

I. Trắc nghiệm:

1. D

2. D

3. D

4. B

5. C

6. D

7. C

8. D

 

Câu 1:

Phương pháp:                

Tổng ba góc trong 1 tam giác là 180 độ.

Tam giác cân có hai góc ở đáy bằng nhau.

Cách giải:

Vì tam giác MNP cân tại M nên ˆN=ˆP=50.

Áp dụng định lí tổng ba góc trong tam giác MNP có:

ˆM+ˆN+ˆP=180ˆM+50+50=180ˆM=80

Chọn D.

Câu 2:

Phương pháp: Dựa vào mối quan hệ giữa góc và cạnh trong tam giác để so sánh các cạnh với nhau.

Cách giải:

Ta có: C=1800(550+850)=400.

C<A<B

AB<BC<AC hay AC>BC>AB.

Chọn D.

Câu 3:

Phương pháp

Hình hộp chữ nhật có 6 mặt, 8 đỉnh, 12 cạnh

Lời giải

Hình hộp chữ nhật có 12 cạnh.

Chọn D

Câu 4.

Phương pháp

Thể tích hình lăng trụ đứng = Diện tích đáy. Chiều cao

Diện tích hình thoi = 12. Tích 2 đường chéo

Lời giải

Diện tích đáy của lăng trụ là: S=12.8.12=48(cm2)

Thể tích hình lăng trụ đó là: V=S.h=48.20=96(cm3)

Chọn B

Câu 5:

Phương pháp:

Ta có công thức nhân hai lũy thừa an.am=an+m

Cách giải:

2x3.5x4=10.x3+4=10x7

Chọn C.

Câu 6:

Phương pháp:

Hệ số cao nhất của đa thức là hệ số của hạng tử có bậc cao nhất trong đa thức.

Cách giải:

Đa thức M = 10x2 – 4x + 3 – 5x5 có hệ số cao nhất là -5.

Chọn D

Chú ý: Hệ số cao nhất không phải hệ số lớn nhất trong đa thức.

Câu 7:

Phương pháp: Nếu ΔABC có trung tuyến AM và trọng tâm G thì AG=23AM.

Cách giải:

 

Nếu ΔABC có trung tuyến AM và trọng tâm G thì GM=13AM=13.9=3(cm).

Chọn C.

Câu 8:

Phương pháp:

Tìm tất cả số khả năng có thể xảy ra và số kết quả thuận lợi cho biến cố đó.

Cách giải:

Mỗi bạn đều có khả năng được chọn nên có 6 kết quả có thể xảy ra.

Có một kết quả thuận lợi cho biến cố “Bạn được chọn là nam”.

Xác suất của biến cố bạn được chọn là nam là 16

Chọn D.

II. TỰ LUẬN

Bài 1:

 Phương pháp:

a) Thực hiện các phép toán với phân số.

b) Vận dụng định nghĩa hai phân số bằng nhau: Nếu ab=cd thì ad=bc.

Cách giải:

a) 112+x=1112

            x=1112112x=11112x=1212=1

Vậy phương trình có nghiệm là x=1

b)  2x127=32x1

(2x1)2=27.3=81(2x1)2=(±9)2

Trường hợp 1:

2x1=92x=10x=5

Trường hợp 2:

2x1=92x=8x=4

Vậy phương trình có nghiệm là x=5 hoặc x=4

Bài 2:

Phương pháp:

Gọi số công nhân của 3 đội lần lượt là x,y,z (điều kiện: x,y,zN)

Vận dụng kiến thức về tỉ lệ nghịch để tìm các đại lượng của đề bài.

Cách giải:

Gọi số công nhân của 3 đội lần lượt là x,y,z (điều kiện: x,y,zN)

Vì đội I có nhiều hơn đội II là 4 người nên: xy=4

Vì số năng suất mỗi người là như sau, nên số người và số ngày hoàn thành công việc là hai đại lượng tỉ lệ nghịch, nên ta có:

4x=6y=8z hay x14=y16=z18

Theo tính chất của dãy tỉ số bằng nhau, ta có: x14=y16=z18=xy1416=4112=48

Từ x14=48x=12 (tmđk)

      y16=48x=8 (tmđk)

      z18=48x=6 (tmđk)

Vậy số công nhân của 3 đội lần lượt là: 12 công nhân, 8 công nhân, 6 công nhân.

Bài 3:

Phương pháp:

a) Thu gọn và sắp xếp các hạng tử của đa thức A(x),B(x) theo lũy thừa giảm dần của biến.

b) Tính A(x)+B(x);A(x)B(x).

c) Chứng minh rằng đa thức C(x) không có nghiệm.

Cách giải:

a) Thu gọn:

A(x)=2x45x3+7x5+4x3+3x2+2x+3A(x)=2x4+(5x3+4x3)+3x2+(7x+2x)5+3A(x)=2x4x3+3x2+9x2

B(x)=5x43x3+5x3x42x3+96xB(x)=(5x43x4)+(3x32x3)+(5x6x)+9B(x)=2x45x3x+9

b) Tính A(x)+B(x);A(x)B(x).

+)A(x)+B(x)=(2x4x3+3x2+9x2)+(2x45x3x+9)=(2x4+2x4)+(x35x3)+3x2+(9xx)+(2+9)=4x46x3+3x2+8x+7

+)A(x)B(x)=(2x4x3+3x2+9x2)(2x45x3x+9)=(2x4x3+3x2+9x2)2x4+5x3+x9=(2x42x4)+(x3+5x3)+3x2+(9x+x)+(29)=4x3+3x2+10x11

c) Chứng minh rằng đa thức C(x) không có nghiệm.

Ta có: C(x)=x4+4x2+5.

x4>0,xx2>0,x nên C(x)>0,x.

không có giá trị nào của x làm cho C(x)=0.

C(x) là đa thức không có nghiệm.

 

Bài 4: Phương pháp:

a) Chứng minh hai tam giác bằng nhau.

b) Chứng minh ΔDHA cân tại D

AD=DH (hai cạnh bên của tam giác cân)

c) Chứng minh DB=DA hay D là trung điểm của AB.

Suy ra G là trọng tâm của tam giác ABC, BE là một đường trung tuyến của ΔABC nên nó đi qua G. Từ đó suy ra B,E,G thẳng hàng.

d) Chứng minh dựa vào bất đẳng thức tam giác, tính chất đường trung tuyến của tam giác.

Cách giải:

 

a) Xét hai tam giác: ΔAHB&ΔAHC.

Ta có: AHB=AHC=900(gt)

AB=ACB=C (do tam giác ABC cân tại A)

 ΔAHB=ΔAHC. (cạnh huyền góc nhọn)

b) Chứng minh AD=DH

ΔABC cân tại A nên AH vừa là đường cao vừa là đường phân giác

A1=A2        (2)

H2=A2     (1)                 (hai góc ở vị trí so le trong)

Từu (1) và (2) suy ra: A1=H2(3)

Tam giác DHA có hai góc ở đáy bằng nhau (A1=H2(cmt))

ΔDHA cân tại D

AD=DH (hai cạnh bên của tam giác cân)

c)

DH//AC(gt) nên ACB=H1 (hai góc ở vị trí đồng vị)  (1)

ACB=ABC (do tam giác ABC cân tại A)     (2)

Từ (1) và (2) suy ra: H1=ABC

Xét ΔDHB có: H1=ABC(cmt)

Nên ΔDHB cân tại D. Do đó: DB=DH

Mặt khác: AD=DH (chứng minh a))

Suy ra: AD=DB Tức D là trung điểm của AB.

Xét ΔABC có DC là đường trung tuyến ứng với cạnh AB

AH là đường trung tuyến ứng với cạnh BC

CDAH=G (giả thiết)

G là trọng tâm của ΔABC

Do đó: đường trung tuyến BE đi qua điểm G, hay nói cách khác B,E,G thẳng hàng.

d) Ta có: DC,BE,AH lần lượt là đường trung tuyến ứng với các cạnh AB;AC;BC

Khi đó:

2DC<AC+BC2BE<AB+BC2AH<AB+BC2.(DC+BE+AH)<2.(AB+AC+BC)DC+BE+AH<AB+AC+BC

DC=BE (do ΔABC cân tại A)

DC+BE+AH<AB+AC+BC2.BE+AH<AB+AC+BC2.32.BG+AH<AB+AC+BC3BG+AH<AB+AC+BCHayAB+AC+BC>AH+3BG

Vậy: AB+AC+BC>AH+3BG

Câu 5:

Phương pháp:

Chứng minh f(7)f(2) là một hợp số ta chứng minh nó có thể phân tích được thành tích của hai số tự nhiên nhỏ hơn nó.

*Lưu ý: Hợp số là một số tự nhiên có thể biểu diễn thành tích của hai số tự nhiên khác nhỏ hơn nó.

Cách giải:

Ta có:

f(5)=125.a+25.b+5.c+d

f(4)=64a+16.b+4.c+d

f(5)f(4)=61a+9b+c=2019

Lại có:

f(7)=343.a+49.b+7c+d

f(2)=8a+4b+2c+d

f(7)f(2)=335a+45b+5c=5.(67a+9b+c)=5.1019

f(7)f(2) là hợp số. (đpcm).


Bình chọn:
3.7 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.