Đề kiểm tra 15 phút - Đề số 6 - Bài 7, 8 - Chương 1 - Đại số 6


Giải Đề kiểm tra 15 phút - Đề số 6 - Bài 7, 8 - Chương 1 - Đại số 6

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Tìm chữ số tận cùng của 312 (không dùng máy tính bỏ túi ).

Bài 2. Tính tổng \(S{\rm{ }} = {\rm{ }}1{\rm{ }} + {\rm{ }}2 + {2^2} + {2^3} + ... + {\rm{ }}{2^{10}}.\;\)

LG bài 1

Phương pháp giải:

Sử dụng: \({a^m}.{a^n} = {a^{m + n}}\)

Lời giải chi tiết:

Ta có : \({3^4}\; = {\rm{ }}81\) có tận cùng là 1.

\( \Rightarrow {\rm{ }}{3^{12}}\; = {\rm{ }}{3^4}{.3^4}{.3^4}{.3^4}\) có tận cùng là 1.

LG bài 2

Phương pháp giải:

Tính \(2S\) sau đó ta tìm được S bằng cách \(S=2S-S\)

Lời giải chi tiết:

Ta có :  

\(\begin{array}{*{20}{l}}
\begin{array}{l}
S = 1 + 2 + {2^{2\;}} + ... + {2^{10}}\\
\Rightarrow 2S = 2\left( {1 + 2 + {2^{2\;}} + ... + {2^{10}}} \right)
\end{array}\\
{ \Rightarrow 2S = 2 + {2^2}\; + {2^{3\;}}\; + ... + {2^{11}}}\\
{\begin{array}{*{20}{l}}
{ \Rightarrow S = 2S - S = {2^{11}}\; - 1}\\
{ \Rightarrow S = {2^{11}}\; - 1 = 2048 - 1 = 2047}
\end{array}}
\end{array}\)

Loigiaihay.com


Bình chọn:
3.5 trên 12 phiếu

>> Xem thêm

Tham Gia Group Dành Cho Lớp 6 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí