Bài 3 trang 160 SGK Đại số 10

Bình chọn:
3.8 trên 5 phiếu

Giải bài 3 trang 160 SGK Đại số 10. Giả sử x1, x2 là hai nghiệm của phương trình đã cho, hãy tính tổng và tích của chúng. Tìm một hệ thức liên hệ giữa x1 và x2 không phụ thuộc vào m.

Lựa chọn câu để xem lời giải nhanh hơn

Cho phương trình:  \({x^2} - 4mx + 9{(m - 1)^2} = 0\)

LG a

Xem xét với giá trị nào của \(m\), phương trình trên có nghiệm.

Phương pháp giải:

+) Phương trình có hai nghiệm phân biệt \(\Leftrightarrow \Delta ' > 0.\)

+) Áp dụng hệ thức Vi-ét:  \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)

Giải chi tiết:

Phương trình có nghiệm  \(\Leftrightarrow Δ’ = 4m^2– 9(m-1) ^2\)\(= -5m^2+ 18m – 9 ≥ 0\)

 \(\Leftrightarrow {3 \over 5} \le m \le 3\)

Phương trình có nghiệm nếu \(m \in \left[ {{3 \over 5}; \, 3} \right]\)

LG b

Giả sử \(x_1,x_2\) là hai nghiệm của phương trình đã cho, hãy tính tổng và tích của chúng. Tìm một hệ thức liên hệ giữa \(x_1\) và \(x_2\) không phụ thuộc vào \(m\).

Phương pháp giải:

+) Phương trình có hai nghiệm phân biệt \(\Leftrightarrow \Delta ' > 0.\)

+) Áp dụng hệ thức Vi-ét:  \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)

Giải chi tiết:

Với  \(m \in \left[ {{3 \over 5},3} \right]\) phương trình có các nghiệm \(x_1,x_2\) thỏa mãn

\(x_1+x_2= 4m\) (1)  và   \(x_1.x_2= 9(m-1)^2\)   (2)

Từ (1) và (2) suy ra:

 \({x_1}.{x_2} = 9{({{{x_1} + {x_2}} \over 4} - 1)^2}\)

\(\Leftrightarrow 9{({x_1} + {x_2} - 4)^2} - 16{x_1}{x_2} = 0\)

Đó là hệ thức giữa hai nghiệm của phương trình độc lập với tham số \(m.\)

LG c

Xác định \(m\) để hiệu các nghiệm của phương trình bằng \(4\).

Phương pháp giải:

+) Phương trình có hai nghiệm phân biệt \(\Leftrightarrow \Delta ' > 0.\)

+) Áp dụng hệ thức Vi-ét:  \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)

Giải chi tiết:

Không mất tính tổng quát, ta giả sử phương trình có hai nghiệm thỏa mãn: \(x_2 > x_1.\)

Khi đó ta có: \(x_2– x_1= 4;x_1+ x_2= 4m \)\(⇒ x_2= 2(m+1).\)

Thay biểu thức của \(x_2\) vào phương trình thì được:

\(4(m+1)^2 – 8m(m+1) + 9(m-1)^2\)\(= 0\)

\(\eqalign{
& \Leftrightarrow 5{m^2} - 18m + 13 = 0 \cr 
& \Leftrightarrow {m_{_1}} = 1;{m_2} = {{13} \over 5} \cr} \)

Kết luận: Nếu \(m = 1\) hoặc \(m = {{13} \over 5}\) thì hiệu của \(2\) nghiệm bằng \(4\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng