Bài 1 trang 159 (Bài tập) SGK Đại số 10

Bình chọn:
3.3 trên 9 phiếu

Giải Bài 1 trang 159 (Bài tập) SGK Đại số 10. Tìm tập xác định A của hàm số f(x)

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số  \(f(x) = \sqrt {{x^2} + 3x + 4} \)\( - \sqrt { - {x^2} + 8x - 15} \)

LG a

Tìm tập xác định \(A\) của hàm số \(f(x)\)

Phương pháp giải:

+) Sử dụng công thức: \( A\backslash B = \left\{ {x|\;\;x \in A,\;\;x \notin B} \right\}.\)

Lời giải chi tiết:

Hàm số xác định  \( \Leftrightarrow \left\{ \begin{array}{l} {x^2} + 3x + 4 \ge 0\\- {x^2} + 8x - 15 \ge 0\end{array} \right.\) 

\( \Leftrightarrow \left\{ \begin{array}{l}
\forall x\; \in R\\
{x^2} - 8x + 15 \le 0
\end{array} \right.\\ \Leftrightarrow \left( {x - 3} \right)\left( {x - 5} \right) \le 0 \Leftrightarrow 3 \le x \le 5.\)

Vậy tập xác định của hàm số là: \(A = \left( {3;\;5} \right].\)

LG b

Giả sử \(B = \left\{ {x \in R:4 < x \le \left. 5 \right\}} \right.\) . Hãy xác định các tập hợp \(A\backslash B\) và \(R\backslash (A\backslash B)\)

Phương pháp giải:

+) Sử dụng công thức: \( A\backslash B = \left\{ {x|\;\;x \in A,\;\;x \notin B} \right\}.\)

Lời giải chi tiết:

 Ta có: \(B = \left\{ {x \in R|\;4 < x \le 5} \right\} = \left( {4;\;5} \right].\)

\(\Rightarrow A\backslash B = \left\{ {x|\;\;x \in A,\;\;x \notin B} \right\} \)\(= \left[ {3;\;4} \right].\)

\(\Rightarrow R\backslash \left( {A\backslash B} \right) = R\backslash \left[ {3;\;4} \right] = \left( { - \infty ;\;3} \right) \cup \)\(\left( {4;\; + \infty } \right).\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Góp ý Loigiaihay.com, nhận quà liền tay