Bài 3 trang 159 SGK Đại số 10>
Phát biểu quy tắc xét dấu một nhị thức bậc nhất. Áp dụng quy tắc đó để giải bất phương trình sau:
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Phát biểu quy tắc xét dấu một nhị thức bậc nhất. Áp dụng quy tắc đó để giải bất phương trình sau:
\(\displaystyle f(x) = {{(3x - 2)(5 - x)} \over {(2 - 7x)}} \ge 0.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Quy tắc xét dấu một nhị thức dựa trên định lí :
“Nhị thức \(f(x) = ax + b (a≠0)\) có dấu cùng với hệ số \(a\) khi \(x\) lấy giá trị trong khoảng \(({{ - b} \over a}, + \infty )\) và trái dấu với hệ số \(a\) khi \(x\) lấy các giá trị thuộc khoảng \(( - \infty ,{{ - b} \over a})\)”.
Lời giải chi tiết
Ta có:
\(\begin{array}{l}
+ )\;3x - 2 = 0 \Leftrightarrow x = \frac{2}{3}.\\
+ )\;5 - x = 0 \Leftrightarrow x = 5.\\
+ )\;2 - 7x = 0 \Leftrightarrow x = \frac{2}{7}.
\end{array}\)
Áp dụng: Ta lập bảng xét dấu của vế trái \(f(x)\) của bất phương trình:
Tập nghiệm của bất phương trình: \(S = ({2 \over 7},{2 \over 3}{\rm{] }} \cup {\rm{ [}}5, + \infty )\)
Loigiaihay.com


- Bài 4 trang 159 SGK Đại số 10
- Bài 5 trang 159 SGK Đại số 10
- Bài 7 trang 159 SGK đại số 10
- Bài 8 trang 159 SGK Đại số 10
- Bài 1 trang 159 (Bài tập) SGK Đại số 10
>> Xem thêm