Bài 3 trang 159 SGK Đại số 10


Phát biểu quy tắc xét dấu một nhị thức bậc nhất. Áp dụng quy tắc đó để giải bất phương trình sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Phát biểu quy tắc xét dấu một nhị thức bậc nhất. Áp dụng quy tắc đó để giải bất phương trình sau:

\(\displaystyle f(x) = {{(3x - 2)(5 - x)} \over {(2 - 7x)}} \ge 0.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Quy tắc xét dấu một nhị thức dựa trên định lí :

“Nhị thức \(f(x) = ax + b (a≠0)\) có dấu cùng với hệ số \(a\) khi \(x\)  lấy giá trị trong khoảng \(({{ - b} \over a}, + \infty )\) và trái dấu với hệ số \(a\) khi \(x\) lấy các giá trị thuộc khoảng \(( - \infty ,{{ - b} \over a})\)”.

Lời giải chi tiết

Ta có: 

\(\begin{array}{l}
+ )\;3x - 2 = 0 \Leftrightarrow x = \frac{2}{3}.\\
+ )\;5 - x = 0 \Leftrightarrow x = 5.\\
+ )\;2 - 7x = 0 \Leftrightarrow x = \frac{2}{7}.
\end{array}\)

Áp dụng: Ta lập bảng xét dấu của vế trái \(f(x)\) của bất phương trình:

Tập nghiệm của bất phương trình: \(S = ({2 \over 7},{2 \over 3}{\rm{] }} \cup {\rm{ [}}5, + \infty )\)

Loigiaihay.com


Bình chọn:
4.2 trên 21 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!