Bài 9.12 trang 94 SGK Toán 11 tập 2 - Kết nối tri thức>
Chuyển động của một hạt trên một dây rung được cho bởi (sleft( t right) = 12 + 0,5sin left( {4pi t} right),)
Đề bài
Chuyển động của một hạt trên một dây rung được cho bởi \(s\left( t \right) = 12 + 0,5\sin \left( {4\pi t} \right),\) trong đó s tính bằng centimét và t tính bằng giây. Tính vận tốc của hạt sau t giây. Vận tốc cực đại của hạt là bao nhiêu?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Ý nghĩa vật lí: \(v = s'\)
- Sử dụng công thức \(\left( {\sin u} \right)' = u'.\cos u\)
Lời giải chi tiết
Ta có \(v\left( t \right) = s'\left( t \right) = 0,5.\left( {4\pi t} \right)'\cos \left( {4\pi t} \right) = 2\pi \cos \left( {4\pi t} \right)\)
Vì \( - 1 \le \cos \left( {4\pi t} \right) \le 1 \Leftrightarrow - 2\pi \le 2\pi \cos \left( {4\pi t} \right) \le 2\pi \Leftrightarrow - 2\pi \le v\left( t \right) \le 2\pi \)
Do đó vận tốc cực đại của hạt là \(2\pi \) cm/s.
- Bài 9.11 trang 94 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.10 trang 94 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.9 trang 94 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.8 trang 94 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.7 trang 94 SGK Toán 11 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức