Bài 7 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo>
Quan hệ song song trong không gian có tính chất nào trong các tính chất sau?
Đề bài
Quan hệ song song trong không gian có tính chất nào trong các tính chất sau?
A. Nếu hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau thì mọi đường thẳng nằm trong \(\left( P \right)\) đều song song với \(\left( Q \right)\).
B. Nếu hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau thì mọi đường thẳng nằm trong \(\left( P \right)\) đều song song với mọi đường thẳng nằm trong \(\left( Q \right)\).
C. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phân biệt \(\left( P \right)\) và \(\left( Q \right)\) thì \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau.
D. Qua một điểm nằm ngoài mặt phẳng cho trước ta vẽ được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó.
Phương pháp giải - Xem chi tiết
Sử dụng các tính chất của hai mặt phẳng song song.
Lời giải chi tiết
A đúng vì hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau thì chúng không có điểm chung, do vậy mọi đường thẳng nằm trong \(\left( P \right)\) đều không có điểm chung với \(\left( Q \right)\) nên song song với mặt phẳng \(\left( Q \right)\).
B sai vì đường thẳng nằm trong \(\left( P \right)\) và đường thẳng nằm trong \(\left( Q \right)\) có thể chéo nhau.
C sai vì \(\left( P \right)\) và \(\left( Q \right)\) có thể cắt nhau.
D sai vì qua một điểm nằm ngoài một mặt phẳng cho trước ta vẽ được vô số đường thẳng song song với mặt phẳng cho trước đó, tập hợp các đường thẳng này là mặt phẳng duy nhất song song với mặt phẳng đã cho.
Chọn A.
- Bài 8 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 9 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 11 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 12 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo