Bài 4 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo>
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(I,J,E,F\) lần lượt là trung điểm \(SA,SB,SC,SD\). Trong các đường thẳng sau, đường nào không song song với \(IJ\)?
Đề bài
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(I,J,E,F\) lần lượt là trung điểm \(SA,SB,SC,SD\). Trong các đường thẳng sau, đường nào không song song với \(IJ\)?
A. \(EF\).
B. \(DC\).
C. \(A{\rm{D}}\).
D. \(AB\).
Phương pháp giải - Xem chi tiết
Sử dụng tính chất đường trung bình của tam giác.
Lời giải chi tiết
Ta có: \(I\) là trung điểm của \(SA\)
\(J\) là trung điểm của \(SB\)
\( \Rightarrow IJ\) là đường trung bình của tam giác \(SAB\)
\( \Rightarrow IJ\parallel AB\)
\(E\) là trung điểm của \(SC\)
\(F\) là trung điểm của \(SD\)
\( \Rightarrow EF\) là đường trung bình của tam giác \(SC{\rm{D}}\)
\( \Rightarrow EF\parallel C{\rm{D}}\)
Mà \(AB\parallel C{\rm{D}}\).
Vậy \(IJ\parallel EF\parallel AB\parallel C{\rm{D}}\).
Vậy \(AD\) không song song với \(IJ\)
Chọn C.
- Bài 5 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 6 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 7 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 8 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 9 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo