Toán 11, giải toán lớp 11 kết nối tri thức với cuộc sống
Bài 17. Hàm số liên tục Toán 11 kết nối tri thức
Bài 5.15 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức>
Xét tính liên tục của các hàm số sau trên tập xác định của chúng: a) (fleft( x right) = frac{x}{{{x^2} + 5x + 6}}) b) (fleft( x right) = left{ {begin{array}{*{20}{c}}{1 + {x^2};,;x < 1}\{4 - x;;,;x ge 1}end{array}} right.)
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) \(f\left( x \right) = \frac{x}{{{x^2} + 5x + 6}}\)
b) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{1 + {x^2}\;,\;x < 1}\\{4 - x\;\;,\;x \ge 1}\end{array}} \right.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Hàm đa thức, phân thức hữu tỉ liên tục trên tập xác định của chúng.
Hàm số \(f\left( x \right)\) liên tục trên khoảng \(\left( {a,b} \right)\) nếu nó liên tục tại mọi điểm thuộc khoảng này
Hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a,b} \right]\) nếu nó liên tục trên khoảng \(\left( {a,b} \right)\) và
\(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right),\;\) \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\)
Lời giải chi tiết
a) \(f\left( x \right) = \frac{x}{{{x^2} + 5x + 6}} = \frac{x}{{\left( {x + 2} \right)\left( {x + 3} \right)}}\)
Tập xác định của \(f\left( x \right):D = \mathbb{R}\backslash \left\{ { - 2; - 3} \right\}\)
Suy ra \(f\left( x \right)\) liên tục trên \(\left( { - \infty ; - 3} \right),\;\left( { - 3; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\)
b) Tập xác định: \(D = \mathbb{R}\)
Ta có:
\(\mathop {\lim }\limits_{x \to {1^ + }} \left( {4 - x} \right) = 3,\;\mathop {\lim }\limits_{x \to {1^ - }} \left( {1 + {x^2}} \right) = 2\)
Do đó không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)
Vậy hàm số gián đoạn tại 1.
Vậy hàm số liên tục trên các khoảng \(\left( { - \infty ; 1} \right), \left( { 1; + \infty } \right)\)
- Bài 5.16 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.17 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.14 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải mục 3 trang 121, 122 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải mục 2 trang 120, 121 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức




