Bài 5.15 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức>
Xét tính liên tục của các hàm số sau trên tập xác định của chúng: a) (fleft( x right) = frac{x}{{{x^2} + 5x + 6}}) b) (fleft( x right) = left{ {begin{array}{*{20}{c}}{1 + {x^2};,;x < 1}\{4 - x;;,;x ge 1}end{array}} right.)
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) \(f\left( x \right) = \frac{x}{{{x^2} + 5x + 6}}\)
b) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{1 + {x^2}\;,\;x < 1}\\{4 - x\;\;,\;x \ge 1}\end{array}} \right.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Hàm đa thức, phân thức hữu tỉ liên tục trên tập xác định của chúng.
Hàm số \(f\left( x \right)\) liên tục trên khoảng \(\left( {a,b} \right)\) nếu nó liên tục tại mọi điểm thuộc khoảng này
Hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a,b} \right]\) nếu nó liên tục trên khoảng \(\left( {a,b} \right)\) và
\(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right),\;\) \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\)
Lời giải chi tiết
a) \(f\left( x \right) = \frac{x}{{{x^2} + 5x + 6}} = \frac{x}{{\left( {x + 2} \right)\left( {x + 3} \right)}}\)
Tập xác định của \(f\left( x \right):D = \mathbb{R}\backslash \left\{ { - 2; - 3} \right\}\)
Suy ra \(f\left( x \right)\) liên tục trên \(\left( { - \infty ; - 3} \right),\;\left( { - 3; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\)
b) Tập xác định: \(D = \mathbb{R}\)
Ta có:
\(\mathop {\lim }\limits_{x \to {1^ + }} \left( {4 - x} \right) = 3,\;\mathop {\lim }\limits_{x \to {1^ - }} \left( {1 + {x^2}} \right) = 2\)
Do đó không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)
Vậy hàm số gián đoạn tại 1.
Vậy hàm số liên tục trên các khoảng \(\left( { - \infty ; 1} \right), \left( { 1; + \infty } \right)\)
- Bài 5.16 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.17 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.14 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải mục 3 trang 121,122 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải mục 2 trang 120, 121 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức