Bài 14 trang 60 SGK Toán 7 tập 2

Bình chọn:
4.2 trên 128 phiếu

Giải bài 14 trang 60 SGK Toán 7 tập 2. Vẽ tam giác PQR

Đề bài

Đố : Vẽ tam giác \(PQR\) có \(PQ = PR =5\,cm\), \(QR = 6\,cm\). Lấy điểm \(M\) trên đường thẳng \(QR\) sao cho \(PM = 4,5\,cm\). Có mấy điểm \(M\) như vậy ?

Điểm \(M\) có nằm trên cạnh \(QR\) hay không ? Tại sao ?

Phương pháp giải - Xem chi tiết

Áp dụng định lý về quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu.

Lời giải chi tiết

* Vẽ hình:

- Vẽ tam giác \(PQR\) có \(PQ = PR = 5\,cm,\; QR = 6\,cm\).

+ Vẽ đoạn thẳng \(QR = 6\,cm\).

+ Vẽ cung tròn tâm \(Q\) và cung tròn tâm \(R\) bán kính \(5\,cm\). Hai cung tròn này cắt nhau tại \(P\).

+ Nối \(PQ\) và \(PR\) ta được tam giác cần vẽ.

- Vẽ điểm \(M\): Vẽ cung tròn tâm \(P\) bán kính \(4,5\,cm\) cắt đường thẳng \(QR\) tại \(M\).

* Chứng minh

\(∆PQR\) có \(PQ = PR = 5\,cm\) nên \(∆PQR\) cân tại \(P\). Từ \(P\) kẻ đường thẳng \(PH ⊥ QR\).

Gọi \(M\) là một điểm nằm trên đường thẳng \(QR\).

Ta có: \(MH, QH, RH\) lần lượt là hình chiếu của \(PM, PQ, PR\) trên \(QR\).

Vì \(PM = 4,5\,cm < PQ\) (hoặc \(PR\)) nên \(MH < QH, MH < RH\).

 - Trên đoạn thẳng \(QH\) có \(MH < QH\) nên \(M\) nằm giữa hai điểm \(Q\) và \(H\).

- Tương tự trên \(RH \) có \(MH < RH\) nên \(M\) nằm giữa hai điểm \(R\) và \(H\).

Do vậy có hai điểm \(M\) thỏa mãn điều kiện đề bài và điểm \(M\) này nằm trên cạnh \(QR\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>>Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử cùng các thầy cô giáo dạy giỏi, nổi tiếng.