Tuyensinh247.com giảm giá 30% tất cả các khóa học các lớp
Xem ngay

Chỉ còn: 1 ngày

Bài 10 trang 59 SGK Toán 7 tập 2

Bình chọn:
4.2 trên 193 phiếu

Giải bài 10 trang 59 SGK Toán 7 tập 2. Chứng minh rằng trong một tam giác cân,

Đề bài

Chứng minh rằng trong một tam giác cân, độ dài đoạn thẳng nối đỉnh đối diện với đáy và một điểm bất kỳ của cạnh đáy nhỏ hơn hoặc bằng độ dài của cạnh bên.

Phương pháp giải - Xem chi tiết

Áp dụng định lí về quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu.

Lời giải chi tiết

Giả sử ∆ABC cân tại A, M là điểm thuộc cạnh đáy BC, ta chứng minh AM ≤ AB; AM ≤ AC.

+ Nếu M  ≡ A hoặc M  ≡  B ( Kí hiệu đọc là trùng với) thì AM = AB, AM = AC.

+ Nếu M nằm giữa B và C; ( M \(\not\equiv\)  B , C). Gọi H là trung điểm của BC, mà ∆ABC cân tại A nên AH ⊥ BC

+ Nếu M ≡ H \(\Rightarrow \) AM ⊥ BC \(\Rightarrow \) AM < AB và AM < AC

+ Nếu M \(\not\equiv\)  H, giả sử M nằm giữa H và C \(\Rightarrow \) MH < CH.

Vì MH và CH là hình chiếu của MA và CA trên đường BC nên MA < CA \(\Rightarrow \) MA < BA

Chứng minh tương tự nếu M nằm giữa H và B thì MA < AB, MA < AC

Vậy mọi giá trị của M trên cạnh đáy BC thì AM ≤  AB, AM ≤  AC.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>>Học trực tuyến lớp 7, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Sử cùng các thầy cô giáo dạy giỏi, nổi tiếng.

Các bài liên quan