

Bài 1.26 trang 40 SGK Toán 11 tập 1 - Kết nối tri thức>
Rút gọn biểu thức (M = cos left( {a + b} right)cos left( {a - b} right) - sin left( {a + b} right)sin left( {a - b} right)), ta được
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Rút gọn biểu thức \(M = \cos \left( {a + b} \right)\cos \left( {a - b} \right) - \sin \left( {a + b} \right)\sin \left( {a - b} \right)\), ta được
A. \(M = \sin 4a\)
B. \(M = 1 - 2{\cos ^2}a\)
C. \(M = 1 - 2{\sin ^2}a\)
D. \(M = \cos 4a\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào công thức biến đổi tích thành tổng
Lời giải chi tiết
\(\cos \left( {a + b} \right)\cos \left( {a - b} \right) - \sin \left( {a + b} \right)\sin \left( {a - b} \right)\)
\( = \frac{1}{2}\left[ {\cos \left( {a + b - a + b} \right) + \cos \left( {a + b + a - b} \right)} \right] - \frac{1}{2}\left[ {\cos \left( {a + b - a + b} \right) - \cos \left( {a + b + a - b} \right)} \right]\)
\( = \frac{1}{2}\left( {\cos 2b + \cos 2a - \cos 2b + \cos 2a} \right) = \frac{1}{2}.2\cos 2a = \cos 2a = 1 - 2{\sin ^2}a\)
Vậy chọn đáp án C


- Bài 1.27 trang 40 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 1.28 trang 40 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 1.29 trang 40 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 1.30 trang 40 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 1.31 trang 41 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức