Bài 1 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo>
Cho hàm số (y = {x^3} - 3{{rm{x}}^2}). Tiếp tuyến với đồ thị của hàm số tại điểm (Mleft( { - 1;4} right)) có hệ số góc bằng
Đề bài
Cho hàm số \(y = {x^3} - 3{{\rm{x}}^2}\). Tiếp tuyến với đồ thị của hàm số tại điểm \(M\left( { - 1;4} \right)\) có hệ số góc bằng:
A. ‒3.
B. 9.
C. ‒9.
D. 72.
Phương pháp giải - Xem chi tiết
Hệ số góc của tiếp tuyến: \(y'\left( {{x_0}} \right)\)
Lời giải chi tiết
Ta có: \(y' = 3{{\rm{x}}^2} - 3.2{\rm{x}} = 3{{\rm{x}}^2} - 6{\rm{x}}\).
Tiếp tuyến với đồ thị của hàm số tại điểm \(M\left( { - 1;4} \right)\) có hệ số góc bằng:
\(y'\left( { - 1} \right) = 3.{\left( { - 1} \right)^2} - 6.\left( { - 1} \right) = 9\)
Chọn B.
- Bài 3 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 4 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 5 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 6 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 7 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo