Bài 1 trang 19 SGK Toán 11 tập 1 - Chân trời ság tạo>
Các đẳng thức sau có thể đồng thời xảy ra không?
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Các đẳng thức sau có thể đồng thời xảy ra không?
a) \(\sin \alpha = \frac{3}{5}\) và \(\cos \alpha = - \frac{4}{5}\)
b) \(\sin \alpha = \frac{1}{3}\) và \(\cot \alpha = \frac{1}{2}\)
c) \(\tan \alpha = 3\) và \(\cot \alpha = \frac{1}{3}\)
Phương pháp giải - Xem chi tiết
Dựa vào công thức đã học để xác định
Lời giải chi tiết
a) Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Leftrightarrow {\left( {\frac{3}{5}} \right)^2} + {\cos ^2}\alpha = 1 \Leftrightarrow \cos \alpha = \pm \frac{4}{5}\)
Đẳng thức có thể đồng thời xảy ra
b) Ta có: \(1 + {\cot ^2}\alpha = \frac{1}{{{{\sin }^2}\alpha }} \Rightarrow 1 + {\cot ^2}\alpha = \frac{1}{{{{\left( {\frac{1}{3}} \right)}^2}}} \Rightarrow \cot \alpha = \pm 2\sqrt 2 \)
Hai đẳng thức không thể đồng thời xảy ra
c) Ta có: \(\tan \alpha .\cot \alpha = 1 \Rightarrow 3.\cot \alpha = 1 \Rightarrow \cot \alpha = \frac{1}{3}\)
Đẳng thức có thể đồng thời xảy ra.
- Bài 2 trang 19 SGK Toán 11 tập 1 - Chân trời ság tạo
- Bài 3 trang 19 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 4 trang 19 SGK Toán 11 tập 1 - Chân trời ság tạo
- Bài 5 trang 19 SGK Toán 11 tập 1 - Chân trời ság tạo
- Bài 6 trang 19 SGK Toán 11 tập 1 - Chân trời ság tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo