Lý thuyết Hai mặt phẳng song song - SGK Toán 11 Cánh Diều


I. Hai mặt phẳng song song

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

I. Hai mặt phẳng song song

Đối với hai mặt phẳng phân biệt \(\left( P \right)\) và \(\left( Q \right)\) trong không gian, có hai khả năng xảy ra:

- Hai mặt \(\left( P \right)\) và \(\left( Q \right)\) được gọi là song song với nhau nếu chúng không có điểm chung. Kí hiệu\(\left( P \right)\) // \(\left( Q \right)\) hay \(\left( Q \right)\) // \(\left( P \right)\).

 

- Hai mặt \(\left( P \right)\) và \(\left( Q \right)\) có điểm chung. Khi đó, chúng cắt nhau theo một đường thẳng.

 

II. Điều kiện và tính chất

  • Nếu mặt phẳng \(\left( P \right)\) chứa hai đường thẳng cắt nhau a, b và a, b cùng song song với mặt phẳng \(\left( Q \right)\) thì \(\left( P \right)\) song song với \(\left( Q \right)\).

 

  • Qua một điểm nằm ngoài một mặt phẳng cho trước có một và chỉ một mặt phẳng song song với mặt phẳng đã cho.

* Hệ quả:

- Nếu đường thẳng a song song với mặt phẳng \(\left( Q \right)\) thì có duy nhất một mặt phẳng chứa a và song song với mặt phẳng \(\left( Q \right)\).

- Nếu 2 mặt phẳng phân biệt cùng song song với mặt phẳng thứ 3 thì song song với nhau.

  • Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song. Nếu mặt phẳng \(\left( R \right)\) cắt mặt phẳng \(\left( P \right)\) thì cũng cắt mặt phẳng \(\left( Q \right)\) và hai giao tuyến song song với nhau.

 

III. Định lí Thalès

 

Nếu a, b là hai cát tuyến bất kì cắt 3 mặt phẳng song song \(\left( P \right)\), \(\left( Q \right)\) và \(\left( R \right)\) lần lượt tại các điểm A, B, C và A’, B’, C’ thì

\(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{AC}}{{A'C'}}\)

 

 


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí