Tổng \(\dfrac{4}{6} + \dfrac{{27}}{{81}}\) có kết quả là
$\dfrac{1}{3}$
\(\dfrac{4}{3}\)
\(\dfrac{3}{4}\)
\(1\)
Tính tổng hai phân số \(\dfrac{{35}}{{36}}\) và \(\dfrac{{ - 125}}{{36}}.\)
$\dfrac{{ - 5}}{2}$
\( - \dfrac{{29}}{5}\)
\(\dfrac{{ - 40}}{9}\)
\(\dfrac{{40}}{9}\)
Thực hiện phép tính \(\dfrac{{65}}{{91}} + \dfrac{{ - 44}}{{55}}\) ta được kết quả là
$\dfrac{{ - 53}}{{35}}$
\(\dfrac{{51}}{{35}}\)
\(\dfrac{{ - 3}}{{35}}\)
\(\dfrac{3}{{35}}\)
Chọn câu đúng.
$\dfrac{{ - 4}}{{11}} + \dfrac{7}{{ - 11}} > 1$
$\dfrac{{ - 4}}{{11}} + \dfrac{7}{{ - 11}} < 0$
$\dfrac{8}{{11}} + \dfrac{7}{{ - 11}} > 1$
$\dfrac{{ - 4}}{{11}} + \dfrac{{ - 7}}{{11}} > - 1$
Chọn câu sai.
$\dfrac{3}{2} + \dfrac{2}{3} > 1$
$\dfrac{3}{2} + \dfrac{2}{3} = \dfrac{{13}}{6}$
$\dfrac{3}{4} + \left( {\dfrac{{ - 4}}{{17}}} \right) = \dfrac{{35}}{{68}}$
$\dfrac{4}{{12}} + \dfrac{{21}}{{36}} = 1$
Tìm \(x\) biết \(x = \dfrac{3}{{13}} + \dfrac{9}{{20}}.\)
\(\dfrac{{12}}{{33}}\)
\(\dfrac{{177}}{{260}}\)
\(\dfrac{{187}}{{260}}\)
\(\dfrac{{177}}{{26}}\)
Tính hợp lý biểu thức \(\dfrac{{ - 9}}{7} + \dfrac{{13}}{4} + \dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{3}{4}\) ta được kết quả là
$\dfrac{9}{5}$
\(\dfrac{{11}}{5}\)
\(\dfrac{{ - 11}}{5}\)
\(\dfrac{{ - 1}}{5}\)
Cho \(A = \left( {\dfrac{1}{4} + \dfrac{{ - 5}}{{13}}} \right) + \left( {\dfrac{2}{{11}} + \dfrac{{ - 8}}{{13}} + \dfrac{3}{4}} \right)\). Chọn câu đúng.
$A > 1$
\(A = \dfrac{2}{{11}}\)
\(A = 1\)
\(A = 0\)
Cho \(M = \left( {\dfrac{{21}}{{31}} + \dfrac{{ - 16}}{7}} \right) + \left( {\dfrac{{44}}{{53}} + \dfrac{{10}}{{31}}} \right) + \dfrac{9}{{53}}\) và \(N = \dfrac{1}{2} + \dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{1}{6} + \dfrac{{ - 3}}{{35}} + \dfrac{1}{3} + \dfrac{1}{{41}}\). Chọn câu đúng.
$M = \dfrac{2}{7};N = \dfrac{1}{{41}}$
$M = 0;N = \dfrac{1}{{41}}$
\(M = \dfrac{{ - 16}}{7};N = \dfrac{{83}}{{41}}\)
$M = - \dfrac{2}{7};N = \dfrac{1}{{41}}$
Tìm \(x \in Z\) biết \(\dfrac{5}{6} + \dfrac{{ - 7}}{8} \le \dfrac{x}{{24}} \le \dfrac{{ - 5}}{{12}} + \dfrac{5}{8}\).
\(x \in \left\{ {0;1;2;3;4} \right\}\)
\(x \in \left\{ { - 1;0;1;2;3;4;5} \right\}\)
\(x \in \left\{ { - 1;0;1;2;3;4} \right\}\)
\(x \in \left\{ {0;1;2;3;4;5} \right\}\)
Có bao nhiêu số nguyên \(x\) thỏa mãn \(\dfrac{{15}}{{41}} + \dfrac{{ - 138}}{{41}} \le x < \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{6}?\)
$6$
\(3\)
\(5\)
\(4\)
Kết quả của phép tính \(\dfrac{3}{4} - \dfrac{7}{{20}}\) là
$\dfrac{1}{{10}}$
$\dfrac{4}{5}$
\(\dfrac{2}{5}\)
\(\dfrac{{ - 1}}{{10}}\)
Tính: \(\dfrac{{ - 1}}{6} - \dfrac{{ - 4}}{9}\)
\(\dfrac{5}{{18}}\)
\(\dfrac{5}{{36}}\)
\(\dfrac{{ - 11}}{{18}}\)
\(\dfrac{{ - 13}}{{36}}\)
Chọn câu đúng.
$\dfrac{4}{{13}} - \dfrac{1}{2} = \dfrac{5}{{26}}$
\(\dfrac{1}{2} - \dfrac{1}{3} = \dfrac{5}{6}\)
\(\dfrac{{17}}{{20}} - \dfrac{1}{5} = \dfrac{{13}}{{20}}\)
\(\dfrac{5}{{15}} - \dfrac{1}{3} = \dfrac{1}{5}\)
Tính \(\dfrac{4}{{15}} - \dfrac{2}{{65}} - \dfrac{4}{{39}}\) ta được
$\dfrac{1}{{39}}$
\(\dfrac{2}{{15}}\)
\(\dfrac{{ - 2}}{{65}}\)
\(\dfrac{1}{{15}}\)
Tính hợp lý \(B = \dfrac{{31}}{{23}} - \left( {\dfrac{7}{{30}} + \dfrac{8}{{23}}} \right)\) ta được
$\dfrac{{23}}{{30}}$
\(\dfrac{7}{{30}}\)
\( - \dfrac{7}{{30}}\)
\( - \dfrac{{23}}{{30}}\)
Phép tính \(\dfrac{9}{7} - \dfrac{5}{{12}}\) là
\(\dfrac{73}{84}\)
\(\dfrac{-13}{84}\)
\(\dfrac{83}{84}\)
\(\dfrac{143}{84}\)