Giải mục 1 trang 74, 75 SGK Toán 11 tập 2 - Chân trời sáng tạo


a) Cho điểm (M) và đường thẳng (a) không đi qua (M). Trong mặt phẳng (left( {M,a} right))

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Lựa chọn câu để xem lời giải nhanh hơn

Hoạt động 1

a) Cho điểm \(M\) và đường thẳng \(a\) không đi qua \(M\). Trong mặt phẳng \(\left( {M,a} \right)\), dùng êke để tìm điểm \(H\) trên \(a\) sao cho \(MH \bot a\) (Hình 1a). Đo độ dài đoạn \(MH\).

b) Cho điểm \(M\) không nằm trên mặt phẳng sàn nhà \(\left( P \right)\). Dùng dây dọi để tìm hình chiếu vuông góc \(H\) của \(M\) trên \(\left( P \right)\) (Hình 1b). Đo độ dài đoạn \(MH\).

Phương pháp giải:

Thực hành đo đạc.

Lời giải chi tiết:

Thực hành đo đạc.

Thực hành 1

Cho hình chóp \(S.ABCD\) với đáy \(ABCD\) là hình vuông cạnh \(a\). Cho biết \(SA = a\) và \(SA\) vuông góc với \(\left( {ABCD} \right)\).

a) Tính khoảng cách từ điểm \(B\) đến \(\left( {SAD} \right)\).

b) Tính khoảng cách từ điểm \(A\) đến cạnh \(SC\).

Phương pháp giải:

‒ Cách tính khoảng cách từ một điểm đến một mặt phẳng: Tính khoảng cách từ điểm đó đến hình chiếu của nó lên mặt phẳng.

‒ Cách tính khoảng cách từ một điểm đến một đường thẳng: Tính khoảng cách từ điểm đó đến hình chiếu của nó lên đường thẳng.

Lời giải chi tiết:

 

a) Ta có:

\(\begin{array}{l}\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB\\AB \bot A{\rm{D}}\end{array} \right\} \Rightarrow AB \bot \left( {SA{\rm{D}}} \right)\\ \Rightarrow d\left( {B,\left( {SA{\rm{D}}} \right)} \right) = AB = a\end{array}\)

b) Kẻ \(AH \bot SC \Rightarrow d\left( {A,SC} \right) = AH\)

Tam giác \(ABC\) vuông tại \(B\)\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2 \)

Tam giác \(SAC\) vuông tại \(A\)\( \Rightarrow SC = \sqrt {S{A^2} + A{C^2}}  = a\sqrt 3 \)

Tam giác \(SAC\) vuông tại \(A\) có đường cao \(AH\)\( \Rightarrow AH = \frac{{SA.AC}}{{SC}} = \frac{{a\sqrt 6 }}{3}\)

Vậy \(d\left( {A,SC} \right) = \frac{{a\sqrt 6 }}{3}\).

Vận dụng 1

Một quạt trần có bề dày của thân quạt là 20 cm. Người muốn treo quạt sao cho khoảng cách từ đỉnh quạt đến sàn nhà là 2,5 m. Hỏi phải làm cán quạt dài bao nhiêu? Cho biết trần nhà cao 3,6 m

Phương pháp giải:

Tính khoảng cách từ thân quạt đến trần nhà.

Lời giải chi tiết:

Đổi \(20cm = 0,2m\)

Độ dài của cán quạt là: \(3,6 - 2,5 - 0,2 = 0,9\left( m \right)\).


Bình chọn:
3.7 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí