Bài 7 trang 82 SGK Toán 11 tập 2 – Chân trời sáng tạo


Cho hình chóp tứ giác đều (S.ABCD) có tất cả các cạnh đều bằng (a) và có (O) là giao điểm hai đường chéo của đáy.

Đề bài

Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(a\) và có \(O\) là giao điểm hai đường chéo của đáy.

a) Tính khoảng cách giữa hai đường thẳng \(AC\) và \(SB\).

b) Tinh thể tích của khối chóp.

Phương pháp giải - Xem chi tiết

‒ Cách tính khoảng cách giữa hai đường thẳng chéo nhau:

Cách 1: Dựng đường vuông góc chung.

Cách 2: Tính khoảng cách từ đường thẳng này đến một mặt phẳng song song với đường thẳng đó và chứa đường thẳng còn lại.

‒ Công thức tính thể tích khối chóp: \(V = \frac{1}{3}Sh\).

Lời giải chi tiết

 

a) Kẻ \(OH \bot SB\left( {H \in SB} \right)\)

\(S.ABC{\rm{D}}\) là chóp tứ giác đều \( \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AC\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AC \bot B{\rm{D}}\)

\( \Rightarrow AC \bot \left( {SB{\rm{D}}} \right) \Rightarrow AC \bot OH\)

Mà \(OH \bot SB\)

\( \Rightarrow d\left( {AC,SB} \right) = OH\)

\(B{\rm{D}} = \sqrt {A{B^2} + A{{\rm{D}}^2}}  = a\sqrt 2  \Rightarrow BO = \frac{1}{2}B{\rm{D}} = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SBO\) vuông tại \(O \Rightarrow SO = \sqrt {S{B^2} - B{O^2}}  = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SBO\) vuông cân tại \(O\) có đường cao \(OH\)

\( \Rightarrow d\left( {AC,SB} \right) = OH = \frac{1}{2}SB = \frac{a}{2}\)

b) \({S_{ABC{\rm{D}}}} = A{B^2} = {a^2}\)

\({V_{S.ABC{\rm{D}}}} = \frac{1}{3}{S_{ABC{\rm{D}}}}.SO = \frac{{{a^3}\sqrt 2 }}{6}\)


Bình chọn:
3.6 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí