Bài 6 trang 82 SGK Toán 11 tập 2 – Chân trời sáng tạo


Cho hình hộp đứng (ABCD.A'B'C'D') có cạnh bên (AA' = 2a) và đáy (ABCD) là hình thoi có (AB = a) và (AC = asqrt 3 ).

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hình hộp đứng \(ABCD.A'B'C'D'\) có cạnh bên \(AA' = 2a\) và đáy \(ABCD\) là hình thoi có \(AB = a\) và \(AC = a\sqrt 3 \).

a) Tính khoảng cách giữa hai đường thẳng \(B{\rm{D}}\) và \(AA'\).

b) Tính thể tích của khối hộp.

Phương pháp giải - Xem chi tiết

‒ Cách tính khoảng cách giữa hai đường thẳng chéo nhau:

Cách 1: Dựng đường vuông góc chung.

Cách 2: Tính khoảng cách từ đường thẳng này đến một mặt phẳng song song với đường thẳng đó và chứa đường thẳng còn lại.

‒ Công thức tính thể tích khối lăng trụ: \(V = Sh\).

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

 

a) Gọi \(O = AC \cap B{\rm{D}}\).

ABCD là hình thoi \( \Rightarrow AC \bot B{\rm{D}} \Rightarrow AO \bot B{\rm{D}}\).

\(AA' \bot \left( {ABCD} \right) \Rightarrow AA' \bot AO\).

\( \Rightarrow d\left( {B{\rm{D}},AA'} \right) = AO = \frac{1}{2}AC = \frac{{a\sqrt 3 }}{2}\).

b) Tam giác OAB vuông tại O \( \Rightarrow BO = \sqrt {A{B^2} - A{O^2}}  = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} {\rm{\;}} = \frac{a}{2}\).

Suy ra \(BD = 2BO = a\).

\({S_{ABCD}} = \frac{1}{2}AC.BD = \frac{1}{2}.a\sqrt 3 .a = \frac{{{a^2}\sqrt 3 }}{2}\).

\({V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = \frac{{{a^2}\sqrt 3 }}{2}.2a = {a^3}\sqrt 3 \).


Bình chọn:
3.5 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí