Giải mục 1 trang 59 SGK Toán 9 tập 1 - Cùng khám phá


Một tấm thảm hình chữ nhật có đường chéo là 5dm và chiều rộng là x(dm). Giải thích vì sao chiều dài của thảm là \(\sqrt {25 - {x^2}} \left( {dm} \right)\).

Lựa chọn câu để xem lời giải nhanh hơn

HĐ1

Trả lời câu hỏi Hoạt động 1 trang 59 SGK Toán 9 Cùng khám phá

Một tấm thảm hình chữ nhật có đường chéo là 5dm và chiều rộng là x(dm). Giải thích vì sao chiều dài của thảm là \(\sqrt {25 - {x^2}} \left( {dm} \right)\).

Phương pháp giải:

+ Xét hình chữ nhật ABCD có độ dài đường chéo \(AC = 5dm\), chiều rộng \(BC = x\left( {dm} \right)\).

+ Áp dụng định lí Pythagore vào tam giác ABC vuông tại B để tính chiều dài AB.

Lời giải chi tiết:

Xét hình chữ nhật ABCD có \(AC = 5dm,BC = x\left( {dm} \right)\).

Áp dụng định lí Pythagore vào tam giác ABC vuông tại B ta có: \(A{B^2} + B{C^2} = A{C^2}\)

\(A{B^2} = A{C^2} - B{C^2} = {5^2} - {x^2} = 25 - {x^2}\) nên \(AB = \sqrt {25 - {x^2}} \left( {dm} \right)\).

LT1

Trả lời câu hỏi Luyện tập 1 trang 59 SGK Toán 9 Cùng khám phá

Chỉ ra các căn thức bậc hai trong các biểu thức sau và tìm điều kiện để chúng xác định:

\({x^2} + y - 1\); \(\sqrt {{x^2} + 5} \); \(\frac{{xy + 2z}}{{{y^2} + z}}\); \({a^2} - 3a + 4\); \(\sqrt {3u - 6} \).

Phương pháp giải:

+ Với A là một biểu thức đại số, người ta gọi \(\sqrt A \) là căn bậc hai của A.

+ \(\sqrt A \) xác định (hay có nghĩa) khi A lấy giá trị không âm.

Lời giải chi tiết:

Các biểu thức là căn thức bậc hai là: \(\sqrt {{x^2} + 5} \); \(\sqrt {3u - 6} \).

Ta thấy: \({x^2} \ge 0\) với mọi số thực x nên \({x^2} + 5 > 0\) với mọi số thực x. Do đó, \(\sqrt {{x^2} + 5} \) xác định với mọi số thực x.

\(\sqrt {3u - 6} \) xác định khi \(3u - 6 \ge 0\), tức là \(u \ge 2\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải mục 2 trang 60 SGK Toán 9 tập 1 - Cùng khám phá

    Hãy chép lại và hoàn thành Bảng 3.1. Em có nhận xét gì về giá trị của \(\sqrt {{{\left( {2x - 1} \right)}^2}} \) và \(\left| {2x - 1} \right|\)?

  • Giải mục 3 trang 60, 61 SGK Toán 9 tập 1 - Cùng khám phá

    Hãy chép lại và hoàn thành Bảng 3.2. Em có nhận xét gì về giá trị của \(\sqrt {\left( {x + 1} \right)\left( {x + 3} \right)} \) và \(\sqrt {x + 1} .\sqrt {x + 3} \)?

  • Giải mục 4 trang 61, 62 SGK Toán 9 tập 1 - Cùng khám phá

    Cho biểu thức A không âm và biểu thức B dương. a) Giải thích vì sao \(\sqrt {\frac{A}{B}} .\sqrt B = \sqrt A \). b) Chứng minh \(\sqrt {\frac{A}{B}} = \frac{{\sqrt A }}{{\sqrt B }}\).

  • Giải mục 5 trang 62, 63, 64 SGK Toán 9 tập 1 - Cùng khám phá

    a) Nhân cả tử và mẫu của biểu thức \(\frac{4}{{3\sqrt 2 }}\) với \(\sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu. b) Nhân cả tử và mẫu của biểu thức \(\frac{5}{{\sqrt 2 + 1}}\) với \(\sqrt 2 - 1\) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu. c) Nhân cả tử và mẫu của biểu thức \(\frac{6}{{\sqrt 5 - \sqrt 2 }}\) với \(\sqrt 5 + \sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.

  • Giải bài tập 3.13 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

    Rút gọn các biểu thức sau: a) \(\sqrt {25{a^4}} - 2{a^2}\); b) \(3\sqrt {4{b^6}} + 7{b^3}\) với \(b < 0\); c) \(\frac{1}{{x - y}}\sqrt {{x^4}{{\left( {x - y} \right)}^2}} \) với \(x > y\); d) \(\sqrt {0,3} .\sqrt {270{z^2}} \).

>> Xem thêm

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí