Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá>
1. Phép thử ngẫu nhiên Một thí nghiệm, một hành động được gọi là phép thử ngẫu nhiên (gọi tắt là phép thử) nếu ta không đoán trước được kết quả của nó, mặc dù đã biết tập hợp tất cả các kết quả có thể xảy ra. Nhận xét: Các phép thử ngẫu nhiên có thể được lặp lại nhiều lần, và dù lặp lại trong những điều kiện giống hệt nhau thì cũng không chắc là sẽ cho cùng kết quả.
1. Phép thử ngẫu nhiên
Một thí nghiệm, một hành động được gọi là phép thử ngẫu nhiên (gọi tắt là phép thử) nếu ta không đoán trước được kết quả của nó, mặc dù đã biết tập hợp tất cả các kết quả có thể xảy ra. |
Nhận xét:
Các phép thử ngẫu nhiên có thể được lặp lại nhiều lần, và dù lặp lại trong những điều kiện giống hệt nhau thì cũng không chắc là sẽ cho cùng kết quả.
2. Không gian mẫu
Tập hợp các kết quả có thể xảy ra của một phép thử được gọi là không gian mẫu của phép thử đó và kí hiệu là \(\Omega \). Tổng số kết quả có thể xảy ra gọi là số kết quả (hay số phần tử) của không gian mẫu. |
Ví dụ: Bạn Lan gieo một con xúc xắc và bạn Hòa gieo một đồng xu được gọi là phép thử.
Kết quả của phép thử là số chấm xuất hiện trên con xúc xác và mặt xuất hiện của đồng xu.
Các kết quả có thể của phép thử là:
Mỗi ô là một kết quả có thể. Không gian mẫu là tập hợp 12 ô của bảng trên.
Do đó không gian mẫu của phép thử là:
\(\Omega = {\rm{\{ (1,S);(2,S);(3,S);(4,S);(5,S);(6,S);(1,N);(2,N);(3,N);(4,N);(5,N);(6,N)\} }}{\rm{.}}\)
Vậy không gian mẫu có 12 phần tử.
- Giải mục 1 trang 121, 122 SGK Toán 9 tập 2 - Cùng khám phá
- Giải mục 2 trang 122, 123, 124 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 10.16 trang 124 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 10.17 trang 124 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 10.18 trang 124 SGK Toán 9 tập 2 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá