Giải Bài 2 trang 14 sách bài tập toán 7 tập 1 - Chân trời sáng tạo


Tính

Đề bài

Tính

a) \({\left( {\dfrac{{ - 1}}{3}} \right)^4}\),\({\left( {\dfrac{{ - 2}}{3}} \right)^3}\),\({\left( {2\dfrac{1}{2}} \right)^3}\),\({\left( { - 0,2} \right)^3}\)

b) \({\left( {\dfrac{{ - 1}}{2}} \right)^2}\),\({\left( {\dfrac{{ - 1}}{2}} \right)^3}\),\({\left( {\dfrac{{ - 1}}{2}} \right)^4}\),\({\left( {\dfrac{{ - 1}}{2}} \right)^5}\)

Phương pháp giải - Xem chi tiết

Ta sử dụng định nghĩa lũy thừa của 1 số hữu tỉ

Lời giải chi tiết

\(\begin{array}{l}a){\left( {\dfrac{{ - 1}}{3}} \right)^4} = \dfrac{{{{( - 1)}^4}}}{{{3^4}}} = \dfrac{{( - 1).( - 1).( - 1).( - 1)}}{{3.3.3.3}} = \dfrac{1}{{81}}\\{\left( {\dfrac{{ - 2}}{3}} \right)^3} = \dfrac{{{{( - 2)}^3}}}{{{3^3}}} = \dfrac{{( - 2).( - 2).( - 2)}}{{3.3.3}} = \dfrac{{ - 8}}{{27}}\end{array}\)

\({\left( {2\dfrac{1}{2}} \right)^3} = {\left( {\dfrac{5}{2}} \right)^3} = \dfrac{{5.5.5}}{{2.2.2}} = \dfrac{{125}}{8}\)

\({\left( { - 0,2} \right)^3} = {\left( {\dfrac{{ - 1}}{5}} \right)^3} = \dfrac{{( - 1).( - 1).( - 1)}}{{5.5.5}} = \dfrac{{ - 1}}{{125}}\)

\(\begin{array}{l}b){\left( {\dfrac{{ - 1}}{2}} \right)^2} = \dfrac{{( - 1).( - 1)}}{{2.2}} = \dfrac{1}{4}\\{\left( {\dfrac{{ - 1}}{2}} \right)^3} = \dfrac{{( - 1).( - 1).( - 1)}}{{2.2.2}} = \dfrac{{ - 1}}{8}\\{\left( {\dfrac{{ - 1}}{2}} \right)^4} = \dfrac{{( - 1).( - 1).( - 1).( - 1)}}{{2.2.2.2}} = \dfrac{1}{{16}}\\{\left( {\dfrac{{ - 1}}{2}} \right)^5} = \dfrac{{( - 1).( - 1).( - 1).( - 1).( - 1)}}{{2.2.2.2.2}} = \dfrac{{ - 1}}{{32}}\end{array}\) 


Bình chọn:
3.8 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí