Giải Bài 18 trang 71 sách bài tập toán 7 - Cánh diều


Chứng minh rằng trong một tam giác, độ dài cạnh lớn nhất sẽ lớn hơn hoặc bằng \(\frac{1}{3}\)chu vi của tam giác nhưng nhỏ hơn nửa chu vi của tam giác đó.

Tổng hợp đề thi giữa kì 1 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Chứng minh rằng trong một tam giác, độ dài cạnh lớn nhất sẽ lớn hơn hoặc bằng \(\frac{1}{3}\)chu vi của tam giác nhưng nhỏ hơn nửa chu vi của tam giác đó.

Phương pháp giải - Xem chi tiết

Gọi độ dài 3 cạnh của tam giác là a, b, c với \(a \ge b \ge c\)

Áp dụng bất đẳng thức tam giác để chứng minh \(\frac{{a + b + c}}{3} \le a \le \frac{{a + b + c}}{2}\)

Lời giải chi tiết

Giả sử độ dài ba cạnh của tam giác là a, b, c với a ≥ b ≥ c > 0.

Theo bất đẳng thức tam giác ta có a < b + c.

Suy ra a + a < a + b + c.

Hay \(a < \frac{{a + b + c}}{2}\) (1)

Vì a ≥ b, a ≥ c nên a + a + a ≥ a + b + c.

Hay 3a ≥ a + b + c.

Do đó \(a \ge \frac{{a + b + c}}{3}\) (2)

Từ (1) và (2) suy ra: \(\frac{{a + b + c}}{3} \le a \le \frac{{a + b + c}}{2}\)

Mà chu vi của tam giác này là a + b + c.

Vậy trong một tam giác, độ dài cạnh lớn nhất sẽ lớn hơn hoặc bằng \(\frac{1}{3}\) chu vi của tam giác nhưng nhỏ hơn nửa chu vi của tam giác đó.


Bình chọn:
3.7 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí