Giải bài 1 trang 126 SGK Toán 10 tập 1 – Chân trời sáng tạo


Đề bài

Một hằng số quan trọng trong toán học là số e có giá trị gần đúng với 12 chữ số hập phân là 2,718281828459.

a) Giả sử ta lấy giá trị 2,7 làm giá trị gần đúng của e. Hãy chứng tỏ sai số tuyệt đối không vượt quá 0,02 và sai số tương đối không vượt quá 0,75%

b) Hãy quy tròn e đến hàng phần nghìn.

c) Tìm số gần đúng của số e với độ chính xác 0,00002.

Phương pháp giải - Xem chi tiết

a)

Sai số tuyệt đối là: \({\Delta _a} = \left| {\overline a  - a} \right|\)

Sai số tương đối là: \({\delta _a} = \frac{{{\Delta _a}}}{{|a|}}\)

c)

Bước 1: Tìm hàng của chữ số khác 0 đầu tiên bên trái của d = 0,00002

Bước 2: Quy tròn e đền hàng tìm được ở trên

Lời giải chi tiết

a)

Sai số tuyệt đối là: \(\Delta  = \left| {e - 2,7} \right| = \;|2,718281828459 - 2,7|\; = 0,018281828459 < 0,02\)

Sai số tương đối là: \({\delta _a} = \frac{{{\Delta _a}}}{{|a|}} < \frac{{0,02}}{{2,7}} \approx 0,74\% \)

b) Quy tròn e đến hàng phần nghìn ta được: 2,718.

c)

Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,00002 là hàng phần trăm nghìn.

Quy tròn e đền hàng phầm trăm nghìn ta được 2,71828


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.