Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 3 - Hình học 7


Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 3 - Hình học 7

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1: Cho tam giác ABC biết BC = 1cm; AB = 6cm. Tính độ dài cạnh AC biết độ dài này là một số nguyên.

Bài 2: Chứng minh rằng “trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy”.

Bài 3: Cho tam giác ABC có AB = 6cm; AC = 12cm; BC = 15cm.

a) Chứng minh rằng ΔABC vuông.

b) Vẽ trung tuyến AM. Từ M vẽ MH vuông góc với AC. Trên tia đối của tia MH lấy điểm K sao cho MK = MH. Chứng minh ΔMHC=ΔMKB.

c) Gọi G là giao điểm của BH và AM. Gọi I là trung điểm của AB. Chứng minh rằng I, G, C thẳng hàng. 

LG bài 1

Phương pháp giải:

Trong một tam giác độ dài 1 cạnh luôn lớn hơn hiệu độ dài hai cạnh và nhỏ hơn tổng độ dài hai cạnh còn lại

Lời giải chi tiết:

Bài 1: Ta có 61AC<6+1 hay 5<AC<7 mà độ dài AC là một số nguyên nên AC = 6cm.

LG bài 2

Phương pháp giải:

Trên tia đối của tia MA lấy D sao cho MD = MA

Chứng minh tam giác ABD bằng tam giác BAC

Lời giải chi tiết:

Trên tia đối của tia MA lấy D sao cho MD = MA khi đó ta có ΔAMC=ΔDMB (c.g.c)

AC=BDˆC=ˆB1

BD // AC (có cặp góc so le trong bằng nhau)

ACAB (gt)

BDAB hay ^ABD=900.

Xét hai tam giác vuông ABD và BAC có AB chung, AC = BD (cmt).

Do đó ΔABD=ΔBAC (c.g.c)

AD=BCAM=12ADAM=12BC. 

LG bài 3

Phương pháp giải:

+Định lý Py-ta-go

+Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền

+Ba đường trung tuyến của tam giác đồng quy tại trọng tam

Lời giải chi tiết:

a) Ta có 

BC2=AB2+AC2(152=92+122).

Theo định lý Pytago đảo ΔABC vuông tại A.

b) Xét ΔMHCΔMKB

+) MC = MB (gt);

+) ˆM1=ˆM2 (đối đỉnh);

+) MH = MK (gt).

Do dó ΔMHC=ΔMKB (c.g.c)

c) Vì tam giác ABC vuông tại A có AM là đường trung tuyến nên AM=MC=BC2 (trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền) 

Suy ra tam giác AMC cân tại M có MH là đường cao nên MH cũng là đường trung tuyến

Hay H là trung điểm của AC

Xét tam giác ABC có 2 đường trung tuyến AM và BH giao nhau tại G nên G là trọng tâm tam giác. Lại có CI cũng là đường trung tuyến của tam giác ABC nên GCI hay I, G, C thẳng hàng. 

Loigiaihay.com

 


Bình chọn:
4.5 trên 43 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí