Bài 67 trang 87 SGK Toán 7 tập 2

Bình chọn:
4.3 trên 12 phiếu

Giải bài 67 trang 87 SGK Toán 7 tập 2. Cho tam giác MNP với đường trung tuyến MR và trọng tâm Q.

Đề bài

Cho tam giác MNP với đường trung tuyến MR và trọng tâm Q.

a) Tính tỉ số các diện tích của hai tam giác MPQ và RPQ.

b) Tính tỉ số các diện tích của hai tam giác MNQ và RNQ.

Từ các kết quả trên, hãy chứng minh các tam giác QMN, QNP, QPM có cùng diện tích.

Gợi ý: Hai tam giác ở mỗi câu a, b, c có chung đường cao.

 

 

Phương pháp giải - Xem chi tiết

Áp dụng tính chất trọng tâm của tam giác.

Lời giải chi tiết

a) Vẽ PB \(  \perp \) MR

Vậy tam giác MPQ và RPQ có chung đường cao PB.

Vì Q là trọng tâm của ∆MNP nên điểm Q thuộc đường trung tuyến MR và  MQ = 2QR.

Ta có:  \( S_{\Delta MPQ}= \frac{1}{2}MQ.PB\)\(= \frac{1}{2}. 2QR.PB =QR.PB \)

và       \(S_{\Delta RPQ}= \frac{1}{2}QR.PB \)
Vậy:    \(\frac{S_{\Delta MPQ}}{S_{\Delta RPQ}} = \frac{QR.PB}{\frac{1}{2}QR.PB} = 2 \)    (1)

b) Vẽ NA \(  \perp \) MR

Vậy tam giác MNQ và RNQ có chung đường cao PB.

Vì Q là trọng tâm của ∆MNP nên điểm Q thuộc đường trung tuyến MR và  MQ = 2QR.

Ta có:  \( S_{\Delta MNQ}= \frac{1}{2}MQ.NA\)\(= \frac{1}{2}. 2QR.NA =QR.NA \)

và       \(S_{\Delta RNQ}= \frac{1}{2}QR.NA \)
Vậy:    \(\frac{S_{\Delta MNQ}}{S_{\Delta RNQ}} = \frac{QR.NA}{\frac{1}{2}QR.NA} = 2 \)    (2)

c) Hai tam giác ∆RPQ và ∆RQN có chung đường cao kẻ từ Q và PR = RN nên S∆PQR = S∆QNR

Vì S∆RPQ + S∆RQN = S∆QNP 

Nên S∆QNP = 2.S∆RPQ = 2.S∆RQN      (3)

Từ (1), (2), (3) => S∆MNQ = S∆QNP = S∆MPQ

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

Các bài liên quan: - Ôn tập chương III : Quan hệ giữa các yếu tố trong tam giác. Các đường đồng quy của tam giác

>>Học trực tuyến lớp 7, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Sử cùng các thầy cô giáo dạy giỏi, nổi tiếng.