Bài 63 trang 87 SGK Toán 7 tập 2


Đề bài

Cho tam giác \(ABC\) với \(AC < AB.\) Trên tia đối của tia \(BC\) lấy điểm \(D\) sao cho \(BD = AB.\) Trên tia đối của tia \(CB\) lấy điểm \(E\) sao cho \(CE = AC.\) Vẽ các đoạn thẳng \(AD, AE.\)

a) Hãy so sánh góc \(ADC\) và góc \(AEB.\)

b) Hãy so sánh các đoạn thẳng \(AD\) và \(AE.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng quan hệ giữa góc và cạnh đối diện trong tam giác.

Lời giải chi tiết

a) Xét \(ΔABC\) có \(AC < AB\) (giả thiết)

 \(⇒ \widehat {ABC} < \widehat {ACB}\)  (quan hệ giữa cạnh và góc đối diện trong tam giác)  (1)

 \(ΔABD\) cân tại \(B\) vì \(AB = BD\) (giả thiết)

\(⇒ \widehat {ADB} = \widehat {DAB}\) (tính chất)

Mà \(\widehat {ABC}  =  \widehat {ADB} +  \widehat {DAB}\)  (góc ngoài tam giác)

⇒ \(\widehat {DAB}  =  \widehat {ADB} = \dfrac{\widehat {ABC}}{2} \)  (2)

\(ΔACE\) cân tại \(C\) vì \(CA = CE\) (giả thiết)

\(⇒ \widehat {CAE} = \widehat {CEA}\) (tính chất)

Mà \(\widehat {ACB}  =  \widehat {CAE} +  \widehat {CEA}\)  (góc ngoài tam giác)

⇒ \(\widehat {CAE}  =  \widehat {CEA} = \dfrac{\widehat {ACB}}{2}\)   (3)

Từ (1), (2), (3) suy ra \(\widehat {ADB} < \widehat {AEC}\) 

hay \(\widehat {ADC} < \widehat {AEB}\)  (điều phải chứng minh).

b) Xét \(ΔADE\) có  \(\widehat {ADE} < \widehat {AED}\) (chứng minh ở phần a)

Mà \(AE\) là cạnh đối diện \(\widehat {ADE}\) và \(AD\) là cạnh đối diện \(\widehat {AED}\) 

\( \Rightarrow AE < AD\) (Quan hệ giữa góc - cạnh đối diện trong tam giác).

Loigiaihay.com


Bình chọn:
4.3 trên 73 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.