Bài 12 trang 107 SGK Đại số 10


Đề bài

Cho \(a, b, c\) là độ dài ba cạnh của một tam giác. Sử dụng định lí về dấu của tam thức bậc hai , chứng minh rằng: \({b^2}{x^{2}}-{\rm{ }}({b^2} + {c^2}-{\rm{ }}{a^2})x{\rm{ }} + {c^2} > 0,{\rm{ }}\forall x.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng bất đẳng thức tam giác: \(a + b + c > 0,\;\;\left| {a - c} \right| < b < a + c.\)

Lời giải chi tiết

Biệt thức của tam thức vế  trái:

\({\Delta {\rm{ }} = {\rm{ }}{{\left( {{b^2} + {c^2}-{\rm{ }}{a^2}} \right)}^2}-{\rm{ }}4{b^2}{c^2}}\)

\( = {\rm{ }}\left( {{b^2} + {c^2}-{\rm{ }}{a^{2}} + {\rm{ }}2bc} \right).\)\({\rm{ }}\left( {{b^2} + {c^2}-{\rm{ }}{a^2} - 2bc} \right)\)

\({ = {\rm{ }}\left[ {{{\left( {b + c} \right)}^2}-{\rm{ }}{a^2}} \right]\left[ {{{\left( {b - c} \right)}^2}-{\rm{ }}{a^2}} \right]}\)

\( = {\rm{ }}\left( {b + a + c} \right).\left( {b + c{\rm{ }}-{\rm{ }}a} \right).\)\(\left( {b{\rm{ }}-{\rm{ }}c + a} \right).\left( {b{\rm{ }}-{\rm{ }}c{\rm{ }}-{\rm{ }}a} \right){\rm{ }} \)

Do a, b, c là 3 cạnh của tam giác nên theo bất đẳng thức tam giác ta có:

    b < c + a ⇒ b – c – a < 0

    c < a + b ⇒ b – c + a > 0

    a < b + c ⇒ b + c – a > 0

    a, b, c > 0 ⇒ a + b + c > 0

⇒ Δ < 0 ⇒ f(x) cùng dấu với b2 ∀x hay f(x) > 0 ∀x .

Nghĩa là: \({b^2}{x^{2}}-{\rm{ }}({b^2} + {c^2}-{\rm{ }}{a^2})x{\rm{ }} + {c^2} > 0,{\rm{ }}\forall x\)

Loigiaihay.com


Bình chọn:
4.1 trên 16 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.