Bài 5 trang 15 SGK Toán 11 tập 1 - Cánh diều>
Cho α + β = π. Tính: a) A = sin2α + cos2β; b) B = (sinα + cosβ)2 + (cosα + sinβ)2.
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho α + β = π. Tính:
a) A = sin2α + cos2β;
b) B = (sinα + cosβ)2 + (cosα + sinβ)2.
Phương pháp giải - Xem chi tiết
Sử dụng công thức lượng giác sau:
\( \sin \alpha = \sin (π - \alpha ) ; \cos \alpha = - \cos(π - \alpha ) \)
Lời giải chi tiết
Ta có α + β = π nên sinα = sin(π – α) = sinβ, suy ra sin2α = sin2β.
a) A = sin2α + cos2β = sin2β + cos2β = 1.
b) Ta có α + β = π nên cosα = – cos(π – α) = – cosβ.
Khi đó, B = (sinα + cosβ)2 + (cosα + sinβ)2
= (sinβ + cosβ)2 + (– cosβ + sinβ)2
= (sinβ + cosβ)2 + (sinβ – cosβ )2
= sin2β + 2sinβ cosβ + cos2β + sin2β – 2sinβ cosβ + cos2β
= 2(sin2β + cos2β)
= 2 . 1 = 2.
- Bài 6 trang 15 SGK Toán 11 tập 1 - Cánh diều
- Bài 4 trang 15 SGK Toán 11 tập 1 - Cánh diều
- Bài 3 trang 15 SGK Toán 11 tập 1 - Cánh diều
- Bài 2 trang 15 SGK Toán 11 tập 1 - Cánh Diều
- Bài 1 trang 15 SGK Toán 11 tập 1 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều