Bài 66 trang 87 SGK Toán 7 tập 2


Đố: Bốn điểm dân cư được xây dựng như hình 58. Hãy tìm vị trí đặt một nhà máy sao cho tổng các khoảng cách từ nhà máy đến bốn điểm dân cư này là nhỏ nhất.

Đề bài

Đố: Bốn điểm dân cư được xây dựng như hình \(58\). Hãy tìm vị trí đặt một nhà máy sao cho tổng các khoảng cách từ nhà máy đến bốn điểm dân cư này là nhỏ nhất.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng bất đẳng thức trong tam giác: Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại.

Lời giải chi tiết

Gọi \(O\) là nơi phải đặt nhà máy. \(A, B, C, D\) lần lượt là bốn điểm dân cư.

Tổng khoảng cách từ nhà máy đến \(4\) khu dân cư là: \(OA + OB + OC + OD.\)

Ta có:

+ Nếu \(O\) nằm trên đoạn \(AC\) (và \(O\) không trùng với giao điểm của \(AC\) và \(BD\)) thì \(\left. {\matrix{ {OA + OC = AC}  \cr {OB + OC > BD} \cr } } \right\} \)\( \Rightarrow  OA + OB + OC + OD > AC \)\(+ BD\)

+ Nếu \(O\) trùng với \(M\) nằm trên đoạn \(BD\) (và \(O\) không trùng với giao điểm của \(AC\) và \(BD\) (hình vẽ dưới)) thì \(\left. {\matrix{ {OB + OD = BD}  \cr {OA + OC > AC}  \cr  } } \right\} \)\( \Rightarrow  OA + OB + OC + OD > AC \)\(+ BD\)

+ Nếu \(O\) (trùng với \(M\)) không nằm trên \(AC\) và \(BD\) (hình vẽ dưới) thì theo bất đẳng thức tam giác ta có: \(\left. {\matrix{ {OA + OC > AC}  \cr {OB + OD > BD}  \cr } } \right\} \)\(\Rightarrow \; OA + OB + OC + OD > AC \)\(+ BD\)

+ Nếu \(O\) là giao điểm của \(AC\) và \(BD\) thì \(OA + OB + OC + OD = AC + BD\)

- Vậy khi \(O\) là giao điểm của \(AC\) và \(BD\) thì tổng khoảng cách từ nhà nhà máy này đến các khu dân cư là ngắn nhất. 

Loigiaihay.com


Bình chọn:
4.7 trên 27 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí