Bài 6.40 trang 26 SGK Toán 11 tập 2 - Kết nối tri thức>
Vào năm 1938, nhà vật lí Frank Benford đã đưa ra một phương pháp để xác định xem một bộ số đã được chọn ngẫu nhiên hay đã được chọn theo cách thủ công.
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Vào năm 1938, nhà vật lí Frank Benford đã đưa ra một phương pháp để xác định xem một bộ số đã được chọn ngẫu nhiên hay đã được chọn theo cách thủ công. Nếu bộ số này không được chọn ngẫu nhiên thì công thức Benford sau sẽ được dùng ước tính xác suất \(P\) để chữ số d là chữ số đầu tiên của bộ số đó: \(P = \log \frac{{d + 1}}{d}\). (Theo F. Benford, The Law of Anomalous Numbers, Proc. Am. Philos. Soc. 78 (1938), \(551 - 572)\).
Chẳng hạn, xác suất để chữ số đầu tiên là 9 bằng khoảng \(4,6\% \) (thay \(d = 9\) trong công thức Benford để tính \(P\) ).
a) Viết công thức tìm chữ số \(d\) nếu cho trước xác suất \(P\).
b) Tìm chữ số có xác suất bằng \(9,7\% \) được chọn.
c) Tính xác suất để chữ số đầu tiên là 1.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng công thức \(P = \log \frac{{d + 1}}{d}\)
Lời giải chi tiết
a) \(P = \log \frac{{d + 1}}{d} \Leftrightarrow \frac{{d + 1}}{d} = {10^P} \Leftrightarrow 1 + \frac{1}{d} = {10^P} \Leftrightarrow \frac{1}{d} = {10^P} - 1 \Leftrightarrow d = \frac{1}{{{{10}^P} - 1}}\)
b) Chữ số có xác suất bằng \(9,7\% \) nên ta có P = 9,7%. Từ ý a suy ra
\(d = \frac{1}{{{{10}^{9,7\% }} - 1}} \approx 4\)
Vậy chữ số 4 có xác suất bằng \(9,7\% \) được chọn
c) Xác suất để chữ số đầu tiên là 1
\(P = \log \frac{{1 + 1}}{1} \approx 0,3\)
- Bài 6.39 trang 26 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 6.38 trang 26 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 6.37 trang 26 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 6.36 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 6.35 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức