Bài 6.35 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức


Cho (0 < a ne 1). Tính giá trị của biểu thức (B = {log _a}left( {frac{{{a^2} cdot sqrt[3]{a} cdot sqrt[5]{{{a^4}}}}}{{sqrt[4]{a}}}} right) + {a^{2{{log }_a}frac{{sqrt {105} }}{{30}}}}).

Đề bài

Cho \(0 < a \ne 1\). Tính giá trị của biểu thức \(B = {\log _a}\left( {\frac{{{a^2} \cdot \sqrt[3]{a} \cdot \sqrt[5]{{{a^4}}}}}{{\sqrt[4]{a}}}} \right) + {a^{2{{\log }_a}\frac{{\sqrt {105} }}{{30}}}}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng công thức lũy thừa và lôgarit

Lời giải chi tiết

\(B = {\log _a}\left( {\frac{{{a^2} \cdot \sqrt[3]{a} \cdot \sqrt[5]{{{a^4}}}}}{{\sqrt[4]{a}}}} \right) + {a^{2{{\log }_a}\frac{{\sqrt {105} }}{{30}}}}\)

\( = {\log _a}\frac{{{a^2}.{a^{\frac{1}{3}}}.{a^{\frac{4}{5}}}}}{{{a^{\frac{1}{4}}}}} + {a^{{{\log }_a}{{\left( {\frac{{\sqrt {105} }}{{30}}} \right)}^2}}}\)

\( = {\log _a}\frac{{{a^{\frac{{47}}{{15}}}}}}{{{a^{\frac{1}{4}}}}} + {a^{{{\log }_a}\frac{7}{{60}}}} = {\log _a}{a^{\frac{{173}}{{60}}}} + {\left( {\frac{7}{60}} \right)^{{{\log }_a}a}}\)

\( = \frac{{173}}{{60}} + \frac{7}{60} = 3\)


Bình chọn:
4.1 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí