Bài 6 trang 33 SGK Toán 11 tập 1 - Chân trời sáng tạo>
Khoảng cách từ tâm một guồng nước đến mặt nước và bán kính của guồng đều bằng 3m.
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Khoảng cách từ tâm một guồng nước đến mặt nước và bán kính của guồng đều bằng 3m. Xét gàu G của guồng. Ban đầu gàu G nằm ở vị trí A (Hình 12)
a) Viết hàm số h biểu diễn chiều cao (tính bằng mét) của gàu G so với mặt nước theo góc \(\alpha = (OA,OG)\)
b) Guồng nước quay hết mỗi vòng trong 30 giây. Dựa vào đồ thị của hàm số sin, hãy cho biết ở các thời điểm t nào trong 1 phút đầu, khoảng cách của gàu đến mặt nước bằng 1,5m.
Phương pháp giải - Xem chi tiết
Dựa vào hình vẽ và sử dụng đồ thị hàm số sin để trả lời.
Lời giải chi tiết
a) Điểm G là điểm biểu diễn cho góc lượng giác có số đo \(\alpha \). Khi đó tọa độ điểm \(G\left( {3cos\alpha ;{\rm{ }}3sin\alpha } \right)\).
Chiều cao của gàu ở vị trí G đến mặt nước là: \(3{\rm{ }} + {\rm{ }}3sin\alpha \) (m).
b) b) Khoảng cách của gàu đến mặt nước bằng 1,5m khi \(3 + 3sin\alpha = 1,5 \Leftrightarrow sin\alpha {\rm{ }} = \frac{{ - 1}}{2}\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\alpha = \frac{{ - \pi }}{6} + k2\pi }\\{\alpha = \frac{{7\pi }}{6} + k2\pi }\end{array}} \right.\)
Một vòng quay là 30 giây và t nằm trong khoảng từ 0 đến 1 phút do đó t ∈ [0; 2π].
Guồng quay mỗi vòng trong 30 giây nên 1 phút guồng quay được 2 vòng, tương ứng với \(4\pi \). Vậy khi gàu cách mặt nước 1,5m thì \(\alpha = \frac{{7\pi }}{6},\alpha = \frac{{19\pi }}{6},\alpha = \frac{{11\pi }}{6},\alpha = \frac{{23\pi }}{6}.\)
Guồng quay 1 vòng tương đương với góc \(2\pi \) hết 30 giây nên để quay hết \(\frac{\pi }{6}\) vòng mất 2,5 giây.
Guồng quay 1 góc \(\alpha = \frac{{7\pi }}{6}\) hết 17,5 giây.
Guồng quay 1 góc \(\alpha = \frac{{19\pi }}{6}\) hết 47,5 giây.
Guồng quay 1 góc \(\alpha = \frac{{11\pi }}{6}\) hết 27,5 giây.
Guồng quay 1 góc \(\alpha = \frac{{23\pi }}{6}\) hết 57,5 giây.
Vậy, ở thời điểm t bằng 17,5 giây, 27,5 giây, 47,5 giây và 57,5 giây, gàu ở cách mặt nước 1,5m.
\(\)
- Bài 7 trang 33 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 5 trang 33 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 4 trang 33 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 3 trang 33 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 2 trang 32 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo