Bài 4 trang 88 SGK Toán 11 tập 2 – Cánh Diều>
Cho tứ diện ABCD có (AB bot (BCD),BC bot CD). Gọi M và N lần lượt là hình chiếu vuông góc của B trên AC và AD. Chứng minh rằng:
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho hình chóp S.ABCD có đáy là hình bình hành. Tam giác ABC nhọn có trực tâm H là hình chiếu của S trên (ABCD). Chứng minh rằng:
a) SA \(\bot\) AD;
b) SC \(\bot\) CD.
Phương pháp giải - Xem chi tiết
Dựa vào quan hệ từ vuông góc đến song song trong không gian để chứng minh
Lời giải chi tiết
a) Vì SH \(\bot\) (ABCD) nên AH là hình chiếu của SA trên mặt phẳng (ABCD). Mà AH \(\bot\) BC, AD // BC => AH \(\bot\) AD. Theo định lí ba đường vuông góc ta có SA \(\bot\) AD.
b) Vì SH \(\bot\) (ABCD) nên HC là hình chiếu của SC trên mặt phẳng (ABCD). Mà AB \(\bot\) HC, AB // CD => HC \(\bot\) CD. Theo định lí 3 đường vuông góc ta có SC \(\bot\) CD.
- Bài 5 trang 88 SGK Toán 11 tập 2 – Cánh Diều
- Bài 3 trang 88 SGK Toán 11 tập 2 – Cánh Diều
- Bài 2 trang 88 SGK Toán 11 tập 2 – Cánh Diều
- Bài 1 trang 88 SGK Toán 11 tập 2 – Cánh Diều
- Giải mục 6 trang 87 SGK Toán 11 tập 2 - Cánh Diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều