Bài 3 trang 88 SGK Toán 11 tập 2 – Cánh Diều>
Cho tứ diện ABCD có (AB bot (BCD)), các tam giác BCD và ACD là những tam giác nhọn.
Đề bài
Cho tứ diện ABCD có \(AB \bot (BCD)\), các tam giác BCD và ACD là những tam giác nhọn. Gọi H, K lần lượt là trực tâm của các tam giác BCD, ACD (Hình 31). Chứng minh rằng:
a) \(CD \bot (ABH)\)
b) \(CD \bot (ABK)\)
c) Ba đường thẳng AK, BH, CD cùng đi qua một điểm
Phương pháp giải - Xem chi tiết
Dựa vào điều kiện đường thẳng vuông góc với mặt phẳng để chứng minh
Lời giải chi tiết
a) Vì \(AB \bot \left( {BCD} \right) \Rightarrow AB \bot CD\left( 1 \right)\)
Có H là trực tâm của tam giác BCD \( \Rightarrow BH \bot CD\left( 2 \right)\)
Tử (1) và (2) \( \Rightarrow CD \bot \left( {ABH} \right)\)
b) Vì \(AB \bot \left( {BCD} \right) \Rightarrow AB \bot CD\left( 1 \right)\)
Có K là trực tâm của tam giác BCD \( \Rightarrow AK \bot CD\left( 2 \right)\)
Từ (1) và (2) \( \Rightarrow CD \bot \left( {ABK} \right)\)
c) Ta có: \( CD \bot \left( {ABH} \right)\) và \(CD \bot \left( {ABK} \right)\). Mà theo tính chất 1, chỉ có duy nhất 1 mặt phẳng đi qua A và B vuông góc với CD. Nên \(\left( {ABH} \right) \equiv \left( {ABK} \right)\).
Ta có H là trực tâm của tam giác BCD nên BH giao với CD tại 1 điểm I, K là trực tâm của tam giác ACD nên AK giao với CD tại 1 điểm I'.
Mà (ABHK) cắt CD tại 1 điểm thuộc CD.
Nên I và I' trùng nhau hay AK, BH, CD cùng đi qua một điểm.
- Bài 4 trang 88 SGK Toán 11 tập 2 – Cánh Diều
- Bài 5 trang 88 SGK Toán 11 tập 2 – Cánh Diều
- Bài 2 trang 88 SGK Toán 11 tập 2 – Cánh Diều
- Bài 1 trang 88 SGK Toán 11 tập 2 – Cánh Diều
- Giải mục 6 trang 87 SGK Toán 11 tập 2 - Cánh Diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều