Bài 4 trang 17 SGK Hình học 10


Giải bài 4 trang 17 SGK Hình học 10. Gọi AM là trung tuyến của tam giác ABC và D là trung điểm của đạn AM. Chứng minh rằng:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Gọi \(AM\) là trung tuyến của tam giác \(ABC\)  và \(D\) là trung điểm của đạn \(AM\). Chứng minh rằng:

LG a

\(2\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = \overrightarrow 0 \)

Phương pháp giải:

Với \(M\) là trung điểm của \(AB\) ta có:

+) \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow 0 .\)

+) Với mọi điểm \(O\) bất kì ta có: \(\overrightarrow {OA}  + \overrightarrow {OB}  = 2\overrightarrow {OM} .\)

Lời giải chi tiết:

 

Vì \(M\) là trung điểm của \(BC\) nên:

Ta có:

\(\overrightarrow {DB}  + \overrightarrow {DC}  = 2\overrightarrow {DM} \)

Mặt khác, do \(D\) là trung điểm của đoạn \(AM\) nên

\(\overrightarrow {DM}  =  - \overrightarrow {DA} \) \(\Leftrightarrow \overrightarrow {DM}  + \overrightarrow {DA}  = \overrightarrow 0 \)

Khi đó: \(2\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = 2\overrightarrow {DA}  + 2\overrightarrow {DM}  \)\(= 2\left( {\overrightarrow {DA}  + \overrightarrow {DM} } \right) = \overrightarrow 0 \)

LG b

\(2\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 4\overrightarrow {OD} \), với \(O\) là điểm tùy ý.

Phương pháp giải:

Với \(M\) là trung điểm của \(AB\) ta có:

+) \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow 0 .\)

+) Với mọi điểm \(O\) bất kì ta có: \(\overrightarrow {OA}  + \overrightarrow {OB}  = 2\overrightarrow {OM} .\)

Lời giải chi tiết:

Ta có:

Cách khác:

\(\eqalign{
& 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 4\overrightarrow {OD} \cr} \)

\(\begin{array}{l}
\Leftrightarrow 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} - 4\overrightarrow {OD} = \overrightarrow 0 \\
\Leftrightarrow 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} - 2\overrightarrow {OD} - \overrightarrow {OD} - \overrightarrow {OD} = \overrightarrow 0 \\
\Leftrightarrow \left( {2\overrightarrow {OA} - 2\overrightarrow {OD} } \right) + \left( {\overrightarrow {OB} - \overrightarrow {OD} } \right) + \left( {\overrightarrow {OC} - \overrightarrow {OD} } \right) = \overrightarrow 0 \\
\Leftrightarrow 2\left( {\overrightarrow {OA} - \overrightarrow {OD} } \right) + \overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow 0 \\
\Leftrightarrow 2\overrightarrow {DA} + \overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow 0
\end{array}\)

(Đúng theo câu a) 

Vậy: \(2\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 4\overrightarrow {OD} \), với \(O\) là điểm tùy ý

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 66 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài