Bài 4 trang 17 SGK Hình học 10


Gọi AM là trung tuyến của tam giác ABC và D là trung điểm của đạn AM. Chứng minh rằng:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Gọi \(AM\) là trung tuyến của tam giác \(ABC\)  và \(D\) là trung điểm của đạn \(AM\). Chứng minh rằng:

LG a

\(2\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = \overrightarrow 0 \)

Phương pháp giải:

Với \(M\) là trung điểm của \(AB\) ta có:

+) \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow 0 .\)

+) Với mọi điểm \(O\) bất kì ta có: \(\overrightarrow {OA}  + \overrightarrow {OB}  = 2\overrightarrow {OM} .\)

Lời giải chi tiết:

 

Vì \(M\) là trung điểm của \(BC\) nên:

Ta có:

\(\overrightarrow {DB}  + \overrightarrow {DC}  = 2\overrightarrow {DM} \)

Mặt khác, do \(D\) là trung điểm của đoạn \(AM\) nên

\(\overrightarrow {DM}  =  - \overrightarrow {DA} \) \(\Leftrightarrow \overrightarrow {DM}  + \overrightarrow {DA}  = \overrightarrow 0 \)

Khi đó: \(2\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = 2\overrightarrow {DA}  + 2\overrightarrow {DM}  \)\(= 2\left( {\overrightarrow {DA}  + \overrightarrow {DM} } \right) = \overrightarrow 0 \)

LG b

\(2\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 4\overrightarrow {OD} \), với \(O\) là điểm tùy ý.

Phương pháp giải:

Với \(M\) là trung điểm của \(AB\) ta có:

+) \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow 0 .\)

+) Với mọi điểm \(O\) bất kì ta có: \(\overrightarrow {OA}  + \overrightarrow {OB}  = 2\overrightarrow {OM} .\)

Lời giải chi tiết:

Ta có:

Cách khác:

\(\eqalign{
& 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 4\overrightarrow {OD} \cr} \)

\(\begin{array}{l}
\Leftrightarrow 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} - 4\overrightarrow {OD} = \overrightarrow 0 \\
\Leftrightarrow 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} - 2\overrightarrow {OD} - \overrightarrow {OD} - \overrightarrow {OD} = \overrightarrow 0 \\
\Leftrightarrow \left( {2\overrightarrow {OA} - 2\overrightarrow {OD} } \right) + \left( {\overrightarrow {OB} - \overrightarrow {OD} } \right) + \left( {\overrightarrow {OC} - \overrightarrow {OD} } \right) = \overrightarrow 0 \\
\Leftrightarrow 2\left( {\overrightarrow {OA} - \overrightarrow {OD} } \right) + \overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow 0 \\
\Leftrightarrow 2\overrightarrow {DA} + \overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow 0
\end{array}\)

(Đúng theo câu a) 

Vậy: \(2\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 4\overrightarrow {OD} \), với \(O\) là điểm tùy ý

Loigiaihay.com


Bình chọn:
4.1 trên 86 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí