Bài 4 trang 141 SGK Toán 11 tập 1 - Chân trời sáng tạo


Cân nặng của một số lợn con mới sinh thuộc hai giống A và B được cho ở biểu đồ dưới đây (đơn vị: kg).

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cân nặng của một số lợn con mới sinh thuộc hai giống A và B được cho ở biểu đồ dưới đây (đơn vị: kg).

a) Hãy so sánh cân nặng của lợn con mới sinh giống A và giống B theo số trung bình và trung vị.

b) Hãy ước lượng tứ phân vị thứ nhất và thứ ba của cân nặng lợn con mới sinh giống A và của cân nặng lợn con mới sinh giống B.

Phương pháp giải - Xem chi tiết

Lập bảng tần số ghép nhóm rồi tính số trung bình, số trung vị, tứ phân vị thứ nhất và thứ ba theo bảng tần số ghép nhóm rồi so sánh.

Lời giải chi tiết

Ta có số liệu thống kê cân nặng của một số lợn con mới sinh thuộc hai giống A và B như sau:

• Tổng số lợn con giống A là: \(n = 8 + 28 + 32 + 17 = 85\)

Cân nặng trung bình của lợn con giống A là:

\(\bar x = \frac{{8.1,05 + 28.1,15 + 32.1,25 + 17.1,35}}{{85}} \approx 1,22\left( {kg} \right)\)

Nhóm chứa số trung vị của giống A là: \(\begin{array}{*{20}{l}}{\;\left[ {1,2;1,3} \right)}\end{array}\)

Ta có: \(n = 85;{n_m} = 32;C = 8 + 28 = 36;{u_m} = 1,2;{u_{m + 1}} = 1,3\)

Trung vị của cân nặng của lợn con giống A là:

\({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 1,2 + \frac{{\frac{{85}}{2} - 36}}{{32}}.\left( {1,3 - 1,2} \right) \approx 1,22\left( {kg} \right)\)

• Tổng số lợn con giống B là: \(n = 13 + 14 + 24 + 14 = 65\)

Cân nặng trung bình của lợn con giống B là:

\(\bar x = \frac{{13.1,05 + 14.1,15 + 24.1,25 + 14.1,35}}{{65}} = 1,21\left( {kg} \right)\)

Nhóm chứa số trung vị của giống B là: \(\begin{array}{*{20}{l}}{\;\left[ {1,2;1,3} \right)}\end{array}\)

Ta có: \(n = 65;{n_m} = 24;C = 13 + 14 = 27;{u_m} = 1,2;{u_{m + 1}} = 1,3\)

Trung vị của cân nặng của lợn con giống B là:

\({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 1,2 + \frac{{\frac{{65}}{2} - 27}}{{24}}.\left( {1,3 - 1,2} \right) \approx 1,22\left( {kg} \right)\)

Vậy số cân nặng trung bình của giống A lớn hơn giống B, số trung vị của giống A và giống B xấp xỉ bằng nhau.

b)

• Giống A

Gọi \({x_1};{x_2};...;{x_{85}}\) là cân nặng của các con lợn con được xếp theo thứ tự không giảm.

Ta có:

\({x_1},...,{x_8} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\;\left[ {1,0;1,1} \right)}\end{array}}\end{array};{x_9},...,{x_{36}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\;\left[ {1,1;1,2} \right)}\end{array}}\end{array}}\end{array};{x_{37}},...,{x_{68}} \in \begin{array}{*{20}{l}}{\;\left[ {1,2;1,3} \right)}\end{array};{x_{69}},...,{x_{85}} \in \begin{array}{*{20}{l}}{\;\left[ {1,3;1,4} \right)}\end{array}\)

Tứ phân vị thứ nhất của dãy số liệu là: \(\frac{1}{2}\left( {{x_{21}} + {x_{22}}} \right)\).

Ta có: \(n = 85;{n_m} = 28;C = 8;{u_m} = 1,1;{u_{m + 1}} = 1,2\)

Do \({x_{21}},{x_{22}} \in \begin{array}{*{20}{c}}{\left[ {1,1;1,2} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 1,1 + \frac{{\frac{{85}}{4} - 8}}{{28}}.\left( {1,2 - 1,1} \right) \approx 1,15\)

Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{x_{64}} + {x_{65}}} \right)\).

Ta có: \(n = 85;{n_j} = 32;C = 8 + 28 = 34;{u_j} = 1,2;{u_{j + 1}} = 1,3\)

Do \({x_{64}},{x_{65}} \in \begin{array}{*{20}{c}}{\left[ {1,2;1,3} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 1,2 + \frac{{\frac{{3.85}}{4} - 34}}{{32}}.\left( {1,3 - 1,2} \right) \approx 1,29\)

• Giống B

Gọi \({y_1};{y_2};...;{y_{65}}\) là cân nặng của các con lợn con được xếp theo thứ tự không giảm.

Ta có:

\({y_1},...,{y_{13}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\;\left[ {1,0;1,1} \right)}\end{array}}\end{array};{y_{14}},...,{y_{27}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\;\left[ {1,1;1,2} \right)}\end{array}}\end{array}}\end{array};{y_{28}},...,{y_{51}} \in \begin{array}{*{20}{l}}{\;\left[ {1,2;1,3} \right)}\end{array};{y_{52}},...,{y_{65}} \in \begin{array}{*{20}{l}}{\;\left[ {1,3;1,4} \right)}\end{array}\)

Tứ phân vị thứ nhất của dãy số liệu là: \(\frac{1}{2}\left( {{y_{16}} + {y_{17}}} \right)\).

Ta có: \(n = 65;{n_m} = 14;C = 13;{u_m} = 1,1;{u_{m + 1}} = 1,2\)

Do \({y_{16}},{y_{17}} \in \begin{array}{*{20}{c}}{\left[ {1,1;1,2} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 1,1 + \frac{{\frac{{65}}{4} - 13}}{{14}}.\left( {1,2 - 1,1} \right) \approx 1,12\)

Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{y_{49}} + {y_{50}}} \right)\).

Ta có: \(n = 65;{n_j} = 24;C = 13 + 14 = 27;{u_j} = 1,2;{u_{j + 1}} = 1,3\)

Do \({y_{49}},{y_{50}} \in \begin{array}{*{20}{c}}{\left[ {1,2;1,3} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 1,2 + \frac{{\frac{{3.65}}{4} - 27}}{{24}}.\left( {1,3 - 1,2} \right) \approx 1,29\)


Bình chọn:
4 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí