Bài 1 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo>
Số trung bình của mẫu số liệu trên thuộc khoảng nào trong các khoảng dưới đây?
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Số trung bình của mẫu số liệu trên thuộc khoảng nào trong các khoảng dưới đây?
A. \(\begin{array}{*{20}{c}}{\left[ {7;9} \right)}\end{array}\).
B. \(\begin{array}{*{20}{c}}{\left[ {9;11} \right)}\end{array}\).
C. \(\begin{array}{*{20}{c}}{\left[ {11;13} \right)}\end{array}\).
D. \(\begin{array}{*{20}{c}}{\left[ {13;15} \right)}\end{array}\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính số trung bình của mẫu số liệu ghép nhóm.
Lời giải chi tiết
Ta có:
Số trung bình của mẫu số liệu trên là:
\(\bar x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4 \in \begin{array}{*{20}{c}}{\left[ {9;11} \right)}\end{array}\)
Chọn B.
- Bài 2 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 3 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 4 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 5 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 6 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo