Bài 3 trang 17 SGK Hình học 10


Trên đường thẳng chứa cạnh BC của tam giác ABC lấy một điểm M

Đề bài

Trên đường thẳng chứa cạnh \(BC\) của tam giác \(ABC\) lấy một điểm \(M\) sao cho \(\overrightarrow {MB}  = 3\overrightarrow {MC} \). Hãy phân tích vectơ \(\overrightarrow {AM} \) theo hai vectơ \(\overrightarrow u  = \overrightarrow {AB} ;\overrightarrow v  = \overrightarrow {AC}. \)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Với 3 điểm \(A, \, \, B, \, \, C\) bất kì ta luôn có: \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} .\)

Lời giải chi tiết

Trước hết ta có 

\(\eqalign{
& \overrightarrow {MB} = 3\overrightarrow {MC}\cr& \Rightarrow \overrightarrow {MB} = 3.(\overrightarrow {MB} + \overrightarrow {BC} ) \cr
& \Rightarrow \overrightarrow {MB} = 3\overrightarrow {MB} + 3\overrightarrow {BC} \cr
& \Rightarrow - 2\overrightarrow {MB} = 3\overrightarrow {BC} \cr
& \Rightarrow 2\overrightarrow {BM}  = 3\overrightarrow {BC} \cr &\Rightarrow \overrightarrow {BM} = {3 \over 2}\overrightarrow {BC} \cr} \)

Mà \(\overrightarrow {BC}  = \overrightarrow {AC}  - \overrightarrow {AB} \) nên \(\overrightarrow {BM}  = {3 \over 2}(\overrightarrow {AC}  - \overrightarrow {AB} )\)

Theo quy tắc \(3\) điểm, ta có

\(\eqalign{
& \overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} \cr&= \overrightarrow {AB} + {3 \over 2}(\overrightarrow {AC} - \overrightarrow {AB} ) \cr& = \overrightarrow {AB}  + \frac{3}{2}\overrightarrow {AC}  - \frac{3}{2}\overrightarrow {AB} \cr &= - {1 \over 2}\overrightarrow {AB} + {3 \over 2}\overrightarrow {AC} \cr
&\text{ Hay }  \overrightarrow {AM} = - {1 \over 2}\overrightarrow u + {3 \over 2}\overrightarrow v \cr} \)

Cách khác:

Ta có: \(\overrightarrow {MB}  = 3\overrightarrow {MC}  \Leftrightarrow \overrightarrow {MB}  - 3\overrightarrow {MC}  = \overrightarrow 0 \)

Theo quy tắc ba điểm ta có:

Lấy (2) nhân với 3 rồi lấy (1) trừ đi ta được:

Loigiaihay.com


Bình chọn:
4.2 trên 89 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí