Bài 3 trang 17 SGK Hình học 10>
Trên đường thẳng chứa cạnh BC của tam giác ABC lấy một điểm M
Đề bài
Trên đường thẳng chứa cạnh \(BC\) của tam giác \(ABC\) lấy một điểm \(M\) sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} \). Hãy phân tích vectơ \(\overrightarrow {AM} \) theo hai vectơ \(\overrightarrow u = \overrightarrow {AB} ;\overrightarrow v = \overrightarrow {AC}. \)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+) Với 3 điểm \(A, \, \, B, \, \, C\) bất kì ta luôn có: \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} .\)
Lời giải chi tiết
Trước hết ta có
\(\eqalign{
& \overrightarrow {MB} = 3\overrightarrow {MC}\cr& \Rightarrow \overrightarrow {MB} = 3.(\overrightarrow {MB} + \overrightarrow {BC} ) \cr
& \Rightarrow \overrightarrow {MB} = 3\overrightarrow {MB} + 3\overrightarrow {BC} \cr
& \Rightarrow - 2\overrightarrow {MB} = 3\overrightarrow {BC} \cr
& \Rightarrow 2\overrightarrow {BM} = 3\overrightarrow {BC} \cr &\Rightarrow \overrightarrow {BM} = {3 \over 2}\overrightarrow {BC} \cr} \)
Mà \(\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} \) nên \(\overrightarrow {BM} = {3 \over 2}(\overrightarrow {AC} - \overrightarrow {AB} )\)
Theo quy tắc \(3\) điểm, ta có
\(\eqalign{
& \overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} \cr&= \overrightarrow {AB} + {3 \over 2}(\overrightarrow {AC} - \overrightarrow {AB} ) \cr& = \overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} - \frac{3}{2}\overrightarrow {AB} \cr &= - {1 \over 2}\overrightarrow {AB} + {3 \over 2}\overrightarrow {AC} \cr
&\text{ Hay } \overrightarrow {AM} = - {1 \over 2}\overrightarrow u + {3 \over 2}\overrightarrow v \cr} \)
Cách khác:
Ta có: \(\overrightarrow {MB} = 3\overrightarrow {MC} \Leftrightarrow \overrightarrow {MB} - 3\overrightarrow {MC} = \overrightarrow 0 \)
Theo quy tắc ba điểm ta có:
Lấy (2) nhân với 3 rồi lấy (1) trừ đi ta được:
Loigiaihay.com
- Bài 4 trang 17 SGK Hình học 10
- Bài 5 trang 17 SGK Hình học 10
- Bài 6 trang 17 SGK Hình học 10
- Bài 7 trang 17 SGK Hình học 10
- Bài 8 trang 17 SGK Hình học 10
>> Xem thêm