Bài 2 trang 112 SGK Toán 11 tập 1 - Chân trời sáng tạo>
Cho hai hình bình hành \(ABCD\) và \(ABEF\) không nằm trong cùng một mặt phẳng. Gọi \(O\) và \(O'\) lần lượt là tâm của \(ABCD\) và \(ABEF\).
Đề bài
Cho hai hình bình hành \(ABCD\) và \(ABEF\) không nằm trong cùng một mặt phẳng. Gọi \(O\) và \(O'\) lần lượt là tâm của \(ABCD\) và \(ABEF\).
a) Chứng minh đường thẳng \(OO'\) song song với các mặt phẳng \(\left( {CDF{\rm{E}}} \right),\left( {ADF} \right)\) và \(\left( {BCE} \right)\).
b) Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AF\) và \(BE\). Chứng minh \(MN\parallel \left( {CDF{\rm{E}}} \right)\).
c) Tìm giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {ABCD} \right)\).
Phương pháp giải - Xem chi tiết
– Để chứng minh đường thẳng song song với mặt phẳng, ta chứng minh đường thẳng đấy không nằm trong mặt phẳng và song song với một đường thẳng nằm trong mặt phẳng.
‒ Để tìm giao tuyến của hai mặt phẳng, ta có 2 cách:
+ Cách 1: Tìm 2 điểm chung phân biệt. Giao tuyến là đường thẳng đi qua hai điểm chung.
+ Cách 2: Tìm 1 điểm chung và 2 đường thẳng song song nằm trên mỗi mặt phẳng. Giao tuyến là đường thẳng đi qua điểm chung và song song với hai đường thẳng đó.
Lời giải chi tiết
a) \(O\) là trung điểm của \(B{\rm{D}}\) (theo tính chất hình bình hành)
\(O'\) là trung điểm của \(BF\) (theo tính chất hình bình hành)
\( \Rightarrow OO'\) là đường trung bình của tam giác \(B{\rm{D}}F\)
\(\left. \begin{array}{l} \Rightarrow OO'\parallel DF\\DF \subset \left( {C{\rm{DFE}}} \right)\end{array} \right\} \Rightarrow OO'\parallel \left( {C{\rm{DFE}}} \right)\)
Ta có:
\(\left. \begin{array}{l}OO'\parallel DF\\DF \subset \left( {A{\rm{DF}}} \right)\end{array} \right\} \Rightarrow OO'\parallel \left( {A{\rm{DF}}} \right)\)
\(O\) là trung điểm của \(AC\) (theo tính chất hình bình hành)
\(O'\) là trung điểm của \(A{\rm{E}}\) (theo tính chất hình bình hành)
\( \Rightarrow OO'\) là đường trung bình của tam giác \(AC{\rm{E}}\)
\(\left. \begin{array}{l} \Rightarrow OO'\parallel CE\\CE \subset \left( {BCE} \right)\end{array} \right\} \Rightarrow OO'\parallel \left( {BC{\rm{E}}} \right)\)
b) \(M\) là trung điểm của \(AF\) (theo tính chất hình bình hành)
\(N\) là trung điểm của \(BE\) (theo tính chất hình bình hành)
\( \Rightarrow MN\) là đường trung bình của hình bình hành \(ABEF\)
\(\left. \begin{array}{l} \Rightarrow MN\parallel EF\parallel AB\\EF \subset \left( {C{\rm{D}}F{\rm{E}}} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {C{\rm{D}}F{\rm{E}}} \right)\)
Ta có:
\(\left. \begin{array}{l}O \in \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right)\\MN\parallel AB\\MN \subset \left( {OMN} \right)\\AB \subset \left( {ABC{\rm{D}}} \right)\end{array} \right\}\)
\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {ABCD} \right)\) là đường thẳng \(d\) đi qua \(O\), song song với \(MN\) và \(AB\).
- Bài 3 trang 112 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 4 trang 112 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 5 trang 112 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 6 trang 112 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 1 trang 111 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo