Bài 1 trang 57 SGK Toán 11 tập 1 - Cánh diều


Cho dãy số (left( {{u_n}} right)) được xác định bởi: ({u_1} = frac{1}{3}) và ({u_n} = 3{u_{n - 1}}) với mọi (n ge 2). Số hạng thứ năm của dãy số (left( {{u_n}} right)) là:

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) được xác định bởi: \({u_1} = \frac{1}{3}\) và \({u_n} = 3{u_{n - 1}}\) với mọi \(n \ge 2\). Số hạng thứ năm của dãy số \(\left( {{u_n}} \right)\) là:

A.27

B.9

C.81

D.243

Phương pháp giải - Xem chi tiết

Dựa vào định nghĩa và số hạng tổng quát của cấp số nhân để xác định.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Ta có: \({u_n} = 3{u_{n - 1}} \Rightarrow q = 3 \Rightarrow {u_n} = \frac{1}{3}{.3^{n - 1}}\)

Số hạng thứ năm của dãy số: \({u_5} = \frac{1}{3}{.3^{5 - 1}} = 27\)

 Chọn đáp án A


Bình chọn:
4 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí