Lý thuyết Tọa độ của vecto trong không gian Toán 12 Chân trời sáng tạo>
Bài 2. Tọa độ của vecto trong không gian 1. Hệ trục tọa độ trong không gian
1. Hệ trục tọa độ trong không gian
Trong không gian, cho ba trục Ox, Oy, Oz đôi một vuông góc. Gọi \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) lần lượt là ba vecto đơn vị trên các trục Ox, Oy, Oz. Hệ ba trục như vậy được gọi là hệ trục tọa độ Descartes vuông góc Oxyz, hay đơn giản gọi là hệ tọa độ Oxyz. |
2. Tọa độ của điểm và vecto
a) Tọa độ của điểm
Trong không gian Oxyz, cho điểm M. Nếu \[\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \] thì ta gọi bộ ba số (x;y;z) là tọa độ điểm M đối với hệ trục tọa độ Oxyz và viết M = (x;y;z) hoặc M (x;y;z); x là hoành độ, y là tung độ, z là cao độ của điểm M. |
b) Tọa độ của vecto
Trong không gian Oxyz, cho \(\overrightarrow a \). Nếu \(\overrightarrow a = {a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k \) thì ta gọi bộ ba số \(\left( {{a_1};{a_2};{a_3}} \right)\) là tọa độ của \(\overrightarrow a \) đối với hệ tọa độ Oxyz và viết \(\overrightarrow a = \left( {{a_1};{a_2};{a_3}} \right)\) hoặc \(\overrightarrow a \left( {{a_1};{a_2};{a_3}} \right)\). |
Ví dụ: Trong không gian Oxyz, cho hình lăng trụ tam giác ABC.A’B’C có A(1;0;2), B(3;2;5), C(7;-3;9)
a) Tìm tọa độ của \(\overrightarrow {AA'} .\)
b) Tìm tọa độ của các điểm B’, C’.
Lời giải
a) Ta có: \(\overrightarrow {AA'} = ({x_{A'}} - {x_A};{y_{A'}} - {y_A};{z_{A'}} - {z_A}) = (4;0; - 1)\).
b) Gọi tọa độ của điểm B’ là (x,y,z) thì \(\overrightarrow {BB'} \) = (x - 3; y - 2; z - 5). Vì ABC.A’B’C’ là hình lăng trụ nên ABB’A’ là hình bình hành, suy ra \(\overrightarrow {AA'} \) = \(\overrightarrow {BB'} .\)
Do đó \(\left\{ \begin{array}{l}x - 3 = 4\\y - 2 = 0\\z - 5 = - 1\end{array} \right.\) hay x = 7, y = 2, z = 4.
Vậy B’(7;2;4).
Lập luận tương tự suy ra C’ (11;-3;8).
- Giải mục 1 trang 52,53 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải mục 2 trang 53,54,55 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 1 trang 56 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 2 trang 56 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 3 trang 56 SGK Toán 12 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo