Bài 3. Biểu thức toạ độ của các phép toán vectơ - Toán 12 Chân trời sáng tạo

Bình chọn:
4.9 trên 7 phiếu
Lý thuyết Biểu thức tọa độ của các phép toán vecto

Bài 3. Biểu thức tọa độ của các phép toán vecto 1. Biểu thức tọa độ của tổng, hiệu hai vecto và tích của một số với một vecto

Xem chi tiết

Câu hỏi mục 1 trang 58,59

Biểu thức toạ độ của tổng, hiệu hai vectơ và tích của một số với một vectơ

Xem chi tiết

Câu hỏi mục 2 trang 59,60

Biểu thức toạ độ của tích vô hướng

Xem chi tiết

Câu hỏi mục 3 trang 60,61,62

Vận dụng

Xem chi tiết

Bài 1 trang 64

Tính: a) \(\overrightarrow a .\overrightarrow b \) với \(\overrightarrow a = (5;2; - 4),\overrightarrow b = (4; - 2;2)\) b) \(\overrightarrow c .\overrightarrow d \) với \(\overrightarrow c = (2; - 3;4)\) , \(\overrightarrow d = (6;5; - 3)\)

Xem chi tiết

Bài 2 trang 64

Cho hai vectơ (overrightarrow a ) = (0; 1; 3) và (overrightarrow b ) = (–2; 3; 1). Tìm toạ độ của vectơ (2overrightarrow b - frac{3}{2}overrightarrow a )

Xem chi tiết

Bài 4 trang 64

Cho ba điểm A(2; 1; –1), B(3; 2; 0) và C(2; –1; 3). a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tính chu vi tam giác ABC. b) Tìm toạ độ trung điểm của các cạnh của tam giác ABC. c) Tìm toạ độ trọng tâm G của tam giác ABC.

Xem chi tiết

Bài 4 trang 64

Cho điểm M(1; 2; 3). Hãy tìm toạ độ của các điểm: a) ({M_1},{M_2},{M_3}) lần lượt là hình chiếu vuông góc của M trên các mặt phẳng toạ độ (Oxy), (Oyz), (Oxz). b) M′, M″, M′′′ lần lượt là điểm đối xứng của M qua O, mặt phẳng (Oxy) và trục Oy.

Xem chi tiết

Bài 5 trang 64

Cho ba điểm A(3; 3; 3), B(1; 1; 2) và C(5; 3; 1). a) Tìm điểm M trên trục Oy cách đều hai điểm B, C. b) Tìm điểm N trên mặt phẳng (Oxy) cách đều ba điểm A, B, C.

Xem chi tiết

Bài 6 trang 64

Cho các điểm A(–1; –1; 0), B(0; 3; –1), C(–1; 14; 0), D(–3; 6; 2). Chứng minh rằng ABCD là hình thang.

Xem chi tiết

Bài 7 trang 64

Cho hình hộp ABCD.A′B′C′D′ có A(1; 0; 1), B(2; 1; 2), D(1; –1; 1), C′(4; 5; –5). Tìm toạ độ các đỉnh còn lại của hình hộp.

Xem chi tiết

Bài 8 trang 64

Tính công sinh bởi lực \(\overrightarrow F \)= (20; 30; –10) (đơn vị: N) tạo bởi một drone giao hàng (Hình 7) khi thực hiện một độ dịch chuyển \(\overrightarrow d \)= (150; 200; 100) (đơn vị: m).

Xem chi tiết