Giải bài tập 2 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo


Cho hai vectơ (overrightarrow a ) = (0; 1; 3) và (overrightarrow b ) = (–2; 3; 1). Tìm toạ độ của vectơ (2overrightarrow b - frac{3}{2}overrightarrow a )

Đề bài

 

 

Cho hai vectơ \(\overrightarrow a \) = (0; 1; 3) và \(\overrightarrow b \) = (–2; 3; 1). Tìm toạ độ của vectơ \(2\overrightarrow b  - \frac{3}{2}\overrightarrow a \)

Phương pháp giải - Xem chi tiết

Cho hai vectơ \(\overrightarrow a  = ({a_1};{a_2};{a_3})\), \(\overrightarrow b  = ({b_1};{b_2};{b_3})\), ta có \(\overrightarrow a  - \overrightarrow b  = ({a_1} - {b_1};{a_2} - {b_2};{a_3} - {b_3})\)

Lời giải chi tiết

\(2\overrightarrow b  - \frac{3}{2}\overrightarrow a  = 2(-2;3;1) - \frac{3}{2}(0;1;3) = (-4;\frac{9}{2};-\frac{5}{2})\)


Bình chọn:
3.6 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí