Giải bài tập 4 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo>
Cho điểm M(1; 2; 3). Hãy tìm toạ độ của các điểm: a) ({M_1},{M_2},{M_3}) lần lượt là hình chiếu vuông góc của M trên các mặt phẳng toạ độ (Oxy), (Oyz), (Oxz). b) M′, M″, M′′′ lần lượt là điểm đối xứng của M qua O, mặt phẳng (Oxy) và trục Oy.
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho điểm M(1; 2; 3). Hãy tìm toạ độ của các điểm:
a) \({M_1},{M_2},{M_3}\) lần lượt là hình chiếu vuông góc của M trên các mặt phẳng toạ độ (Oxy), (Oyz), (Oxz).
b) M′, M″, M′′′ lần lượt là điểm đối xứng của M qua O, mặt phẳng (Oxy) và trục Oy.
Phương pháp giải - Xem chi tiết
a) Có \(A({a_1};{a_2};{a_3})\). Tọa độ của hình chiếu của A lên (Oxy) là \(({a_1};{a_2};0)\), lên (Oyz) là \((0;{a_2};{a_3})\), lên (Oxz) là \(({a_1};0;{a_3})\).
b) Áp dụng công thức tìm tọa độ trung điểm.
Lời giải chi tiết
a) \({M_1}(1;2;0),{M_2}(0;2;3),{M_3}(1;0;3)\).
b)
+) Vì O là trung điểm của MM’ nên
\(\left\{ {\begin{array}{*{20}{c}}{{x_{M'}} = 2{x_O} - {x_M}}\\{{y_{M'}} = 2{y_O} - {y_M}}\\{{z_{M'}} = 2{z_O} - {z_M}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{M'}} = 2.0 - 1}\\{{y_{M'}} = 2.0 - 2}\\{{z_{M'}} = 2.0 - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{M'}} = - 1}\\{{y_{M'}} = - 2}\\{{z_{M'}} = - 3}\end{array}} \right.\)
Vậy M’(-1;-2;-3).
+) Vì M’’ đối xứng với M qua mặt phẳng Oxy nên \({M_1}\) là trung điểm của MM’’. Khi đó
\(\left\{ {\begin{array}{*{20}{c}}{{x_{M''}} = 2{x_{{M_1}}} - {x_M}}\\{{y_{M''}} = 2{y_{{M_1}}} - {y_M}}\\{{z_{M''}} = 2{z_{{M_1}}} - {z_M}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{M''}} = 2.1 - 1}\\{{y_{M''}} = 2.2 - 2}\\{{z_{M''}} = 2.0 - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{M''}} = 1}\\{{y_{M''}} = 2}\\{{z_{M''}} = - 3}\end{array}} \right.\)
Vậy M’’(1;2;-3).
+) K là hình chiếu của M trên Oy nên K(0;2;0).
Vì K là trung điểm của MM’’’ nên
\(\left\{ {\begin{array}{*{20}{c}}{{x_{M'''}} = 2{x_K} - {x_M}}\\{{y_{M'''}} = 2{y_K} - {y_M}}\\{{z_{M'''}} = 2{z_K} - {z_M}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{M''}} = 2.0 - 1}\\{{y_{M''}} = 2.2 - 2}\\{{z_{M''}} = 2.0 - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{M''}} = - 1}\\{{y_{M''}} = 2}\\{{z_{M''}} = - 3}\end{array}} \right.\)
Vậy M’’’(-1;2;-3).
- Giải bài tập 5 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 6 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 7 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 8 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 3 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo